Section 1: Introduction |
|
What is Physics? |
7:12 |
| |
Intro |
0:00 | |
| |
Objectives |
0:11 | |
| |
What is Physics? |
0:27 | |
| |
Why? |
0:50 | |
| |
| Physics Answers the 'Why' Question |
0:51 | |
| |
Matter |
1:27 | |
| |
| Matter |
1:28 | |
| |
| Mass |
1:43 | |
| |
| Inertial Mass |
1:50 | |
| |
| Gravitational Mass |
2:13 | |
| |
A Spacecraft's Mass |
3:03 | |
| |
| What is the Mass of the Spacecraft? |
3:05 | |
| |
Energy |
3:37 | |
| |
| Energy |
3:38 | |
| |
| Work |
3:45 | |
| |
| Putting Energy and Work Together |
3:50 | |
| |
Mass-Energy Equivalence |
4:15 | |
| |
| Relationship between Mass & Energy: E = mc² |
4:16 | |
| |
| Source of Energy on Earth |
4:47 | |
| |
The Study of Everything |
5:00 | |
| |
| Physics is the Study of Everything |
5:01 | |
| |
Mechanics |
5:29 | |
| |
| Topics Covered |
5:30 | |
| |
| Topics Not Covered |
6:07 | |
| |
Next Steps |
6:44 | |
| |
| Three Things You'd Like to Learn About in Physics |
6:45 | |
|
Math Review |
1:00:51 |
| |
Intro |
0:00 | |
| |
Objectives |
0:10 | |
| |
Vectors and Scalars |
1:06 | |
| |
| Scalars |
1:07 | |
| |
| Vectors |
1:27 | |
| |
Vector Representations |
2:00 | |
| |
| Vector Representations |
2:01 | |
| |
Graphical Vector Addition |
2:54 | |
| |
| Graphical Vector Addition |
2:55 | |
| |
Graphical Vector Subtraction |
5:36 | |
| |
| Graphical Vector Subtraction |
5:37 | |
| |
Vector Components |
7:12 | |
| |
| Vector Components |
7:13 | |
| |
Angle of a Vector |
8:56 | |
| |
| tan θ |
9:04 | |
| |
| sin θ |
9:25 | |
| |
| cos θ |
9:46 | |
| |
Vector Notation |
10:10 | |
| |
| Vector Notation 1 |
10:11 | |
| |
| Vector Notation 2 |
12:59 | |
| |
Example I: Magnitude of the Horizontal & Vertical Component |
16:08 | |
| |
Example II: Magnitude of the Plane's Eastward Velocity |
17:59 | |
| |
Example III: Magnitude of Displacement |
19:33 | |
| |
Example IV: Total Displacement from Starting Position |
21:51 | |
| |
Example V: Find the Angle Theta Depicted by the Diagram |
26:35 | |
| |
Vector Notation, cont. |
27:07 | |
| |
| Unit Vector Notation |
27:08 | |
| |
| Vector Component Notation |
27:25 | |
| |
Vector Multiplication |
28:39 | |
| |
| Dot Product |
28:40 | |
| |
| Cross Product |
28:54 | |
| |
Dot Product |
29:03 | |
| |
| Dot Product |
29:04 | |
| |
Defining the Dot Product |
29:26 | |
| |
| Defining the Dot Product |
29:27 | |
| |
Calculating the Dot Product |
29:42 | |
| |
| Unit Vector Notation |
29:43 | |
| |
| Vector Component Notation |
30:58 | |
| |
Example VI: Calculating a Dot Product |
31:45 | |
| |
| Example VI: Part 1 - Find the Dot Product of the Following Vectors |
31:46 | |
| |
| Example VI: Part 2 - What is the Angle Between A and B? |
32:20 | |
| |
Special Dot Products |
33:52 | |
| |
| Dot Product of Perpendicular Vectors |
33:53 | |
| |
| Dot Product of Parallel Vectors |
34:03 | |
| |
Dot Product Properties |
34:51 | |
| |
| Commutative |
34:52 | |
| |
| Associative |
35:05 | |
| |
| Derivative of A * B |
35:24 | |
| |
Example VII: Perpendicular Vectors |
35:47 | |
| |
Cross Product |
36:42 | |
| |
| Cross Product of Two Vectors |
36:43 | |
| |
| Direction Using the Right-hand Rule |
37:32 | |
| |
| Cross Product of Parallel Vectors |
38:04 | |
| |
Defining the Cross Product |
38:13 | |
| |
| Defining the Cross Product |
38:14 | |
| |
Calculating the Cross Product Unit Vector Notation |
38:41 | |
| |
| Calculating the Cross Product Unit Vector Notation |
38:42 | |
| |
Calculating the Cross Product Matrix Notation |
39:18 | |
| |
| Calculating the Cross Product Matrix Notation |
39:19 | |
| |
Example VII: Find the Cross Product of the Following Vectors |
42:09 | |
| |
Cross Product Properties |
45:16 | |
| |
| Cross Product Properties |
45:17 | |
| |
Units |
46:41 | |
| |
| Fundamental Units |
46:42 | |
| |
| Derived units |
47:13 | |
| |
Example IX: Dimensional Analysis |
47:21 | |
| |
Calculus |
49:05 | |
| |
| Calculus |
49:06 | |
| |
Differential Calculus |
49:49 | |
| |
| Differentiation & Derivative |
49:50 | |
| |
Example X: Derivatives |
51:21 | |
| |
Integral Calculus |
53:03 | |
| |
| Integration |
53:04 | |
| |
| Integral |
53:11 | |
| |
| Integration & Derivation are Inverse Functions |
53:16 | |
| |
| Determine the Original Function |
53:37 | |
| |
Common Integrations |
54:45 | |
| |
| Common Integrations |
54:46 | |
| |
Example XI: Integrals |
55:17 | |
| |
Example XII: Calculus Applications |
58:32 | |
Section 2: Kinematics |
|
Describing Motion I |
23:47 |
| |
Intro |
0:00 | |
| |
Objectives |
0:10 | |
| |
Position / Displacement |
0:39 | |
| |
| Object's Position |
0:40 | |
| |
| Position Vector |
0:45 | |
| |
| Displacement |
0:56 | |
| |
| Position & Displacement are Vectors |
1:05 | |
| |
| Position & Displacement in 1 Dimension |
1:11 | |
| |
Example I: Distance & Displacement |
1:21 | |
| |
Average Speed |
2:14 | |
| |
| Average Speed |
2:15 | |
| |
| Average Speed is Scalar |
2:27 | |
| |
Average Velocity |
2:39 | |
| |
| Average Velocity |
2:40 | |
| |
| Average Velocity is a Vector |
2:57 | |
| |
Example II: Speed vs. Velocity |
3:16 | |
| |
| Example II: Deer's Average Speed |
3:17 | |
| |
| Example II: Deer's Average Velocity |
3:48 | |
| |
Example III: Chuck the Hungry Squirrel |
4:21 | |
| |
| Example III: Chuck's Distance Traveled |
4:22 | |
| |
| Example III: Chuck's Displacement |
4:43 | |
| |
| Example III: Chuck's Average Speed |
5:25 | |
| |
| Example III: Chuck's Average Velocity |
5:39 | |
| |
Acceleration |
6:11 | |
| |
| Acceleration: Definition & Equation |
6:12 | |
| |
| Acceleration: Units |
6:19 | |
| |
| Relationship of Acceleration to Velocity |
6:52 | |
| |
Example IV: Acceleration Problem |
7:05 | |
| |
The Position Vector |
7:39 | |
| |
| The Position Vector |
7:40 | |
| |
Average Velocity |
9:35 | |
| |
| Average Velocity |
9:36 | |
| |
Instantaneous Velocity |
11:20 | |
| |
| Instantaneous Velocity |
11:21 | |
| |
| Instantaneous Velocity is the Derivative of Position with Respect to Time |
11:35 | |
| |
| Area Under the Velocity-time Graph |
12:08 | |
| |
Acceleration |
12:36 | |
| |
| More on Acceleration |
12:37 | |
| |
| Average Acceleration |
13:11 | |
| |
| Velocity vs. Time Graph |
13:14 | |
| |
Graph Transformations |
13:59 | |
| |
| Graphical Analysis of Motion |
14:00 | |
| |
Velocity and acceleration in 2D |
14:35 | |
| |
| Velocity Vector in 2D |
14:39 | |
| |
| Acceleration Vector in 2D |
15:26 | |
| |
Polynomial Derivatives |
16:10 | |
| |
| Polynomial Derivatives |
16:11 | |
| |
Example V: Polynomial Kinematics |
16:31 | |
| |
Example VI: Velocity Function |
17:54 | |
| |
| Example VI: Part A - Determine the Acceleration at t=1 Second |
17:55 | |
| |
| Example VI: Part B - Determine the Displacement between t=0 and t=5 Seconds |
18:33 | |
| |
Example VII: Tortoise and Hare |
20:14 | |
| |
Example VIII: d-t Graphs |
22:40 | |
|
Describing Motion II |
36:47 |
| |
Intro |
0:00 | |
| |
Objectives |
0:09 | |
| |
Special Case: Constant Acceleration |
0:31 | |
| |
| Constant Acceleration & Kinematic Equations |
0:32 | |
| |
Deriving the Kinematic Equations |
1:28 | |
| |
| V = V₀ + at |
1:39 | |
| |
| ∆x = V₀t +(1/2)at² |
2:03 | |
| |
| V² = V₀² +2a∆x |
4:05 | |
| |
Problem Solving Steps |
7:02 | |
| |
| Step 1 |
7:13 | |
| |
| Step 2 |
7:18 | |
| |
| Step 3 |
7:27 | |
| |
| Step 4 |
7:30 | |
| |
| Step 5 |
7:31 | |
| |
Example IX: Horizontal Kinematics |
7:38 | |
| |
Example X: Vertical Kinematics |
9:45 | |
| |
Example XI: 2 Step Problem |
11:23 | |
| |
Example XII: Acceleration Problem |
15:01 | |
| |
Example XIII: Particle Diagrams |
15:57 | |
| |
Example XIV: Particle Diagrams |
17:36 | |
| |
Example XV: Quadratic Solution |
18:46 | |
| |
Free Fall |
22:56 | |
| |
| Free Fall |
22:57 | |
| |
Air Resistance |
23:24 | |
| |
| Air Resistance |
23:25 | |
| |
Acceleration Due to Gravity |
23:48 | |
| |
| Acceleration Due to Gravity |
23:49 | |
| |
Objects Falling From Rest |
24:18 | |
| |
| Objects Falling From Rest |
24:19 | |
| |
Example XVI: Falling Objects |
24:55 | |
| |
Objects Launched Upward |
26:01 | |
| |
| Objects Launched Upward |
26:02 | |
| |
Example XVII: Ball Thrown Upward |
27:16 | |
| |
Example XVIII: Height of a Jump |
27:48 | |
| |
Example XIX: Ball Thrown Downward |
31:10 | |
| |
Example XX: Maximum Height |
32:27 | |
| |
Example XXI: Catch-Up Problem |
33:53 | |
| |
Example XXII: Ranking Max Height |
35:52 | |
|
Projectile Motion |
30:34 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
What is a Projectile? |
0:28 | |
| |
| What is a Projectile? |
0:29 | |
| |
Path of a Projectile |
0:58 | |
| |
| Path of a Projectile |
0:59 | |
| |
Independence of Motion |
2:45 | |
| |
| Vertical & Horizontal Motion |
2:46 | |
| |
Example I: Horizontal Launch |
3:14 | |
| |
Example II: Parabolic Path |
7:20 | |
| |
Angled Projectiles |
8:01 | |
| |
| Angled Projectiles |
8:02 | |
| |
Example III: Human Cannonball |
10:05 | |
| |
Example IV: Motion Graphs |
14:39 | |
| |
Graphing Projectile Motion |
19:05 | |
| |
| Horizontal Equation |
19:06 | |
| |
| Vertical Equation |
19:46 | |
| |
Example V: Arrow Fired from Tower |
21:28 | |
| |
Example VI: Arrow Fired from Tower |
24:10 | |
| |
Example VII: Launch from a Height |
24:40 | |
| |
Example VIII: Acceleration of a Projectile |
29:49 | |
|
Circular & Relative Motion |
30:24 |
| |
Intro |
0:00 | |
| |
Objectives |
0:08 | |
| |
Radians and Degrees |
0:32 | |
| |
| Degrees |
0:35 | |
| |
| Radians |
0:40 | |
| |
Example I: Radians and Degrees |
1:08 | |
| |
| Example I: Part A - Convert 90 Degrees to Radians |
1:09 | |
| |
| Example I: Part B - Convert 6 Radians to Degrees |
2:08 | |
| |
Linear vs. Angular Displacement |
2:38 | |
| |
| Linear Displacement |
2:39 | |
| |
| Angular Displacement |
2:52 | |
| |
Linear vs. Angular Velocity |
3:18 | |
| |
| Linear Velocity |
3:19 | |
| |
| Angular Velocity |
3:25 | |
| |
Direction of Angular Velocity |
4:36 | |
| |
| Direction of Angular Velocity |
4:37 | |
| |
Converting Linear to Angular Velocity |
5:05 | |
| |
| Converting Linear to Angular Velocity |
5:06 | |
| |
Example II: Earth's Angular Velocity |
6:12 | |
| |
Linear vs. Angular Acceleration |
7:26 | |
| |
| Linear Acceleration |
7:27 | |
| |
| Angular Acceleration |
7:32 | |
| |
Centripetal Acceleration |
8:05 | |
| |
| Expressing Position Vector in Terms of Unit Vectors |
8:06 | |
| |
| Velocity |
10:00 | |
| |
| Centripetal Acceleration |
11:14 | |
| |
| Magnitude of Centripetal Acceleration |
13:24 | |
| |
Example III: Angular Velocity & Centripetal Acceleration |
14:02 | |
| |
Example IV: Moon's Orbit |
15:03 | |
| |
Reference Frames |
17:44 | |
| |
| Reference Frames |
17:45 | |
| |
| Laws of Physics |
18:00 | |
| |
| Motion at Rest vs. Motion at a Constant Velocity |
18:21 | |
| |
Motion is Relative |
19:20 | |
| |
| Reference Frame: Sitting in a Lawn Chair |
19:21 | |
| |
| Reference Frame: Sitting on a Train |
19:56 | |
| |
Calculating Relative Velocities |
20:19 | |
| |
| Calculating Relative Velocities |
20:20 | |
| |
| Example: Calculating Relative Velocities |
20:57 | |
| |
Example V: Man on a Train |
23:19 | |
| |
Example VI: Airspeed |
24:56 | |
| |
Example VII: 2-D Relative Motion |
26:12 | |
| |
Example VIII: Relative Velocity w/ Direction |
28:32 | |
Section 3: Dynamics |
|
Newton's First Law & Free Body Diagrams |
23:57 |
| |
Intro |
0:00 | |
| |
Objectives |
0:11 | |
| |
Newton's 1st Law of Motion |
0:28 | |
| |
| Newton's 1st Law of Motion |
0:29 | |
| |
Force |
1:16 | |
| |
| Definition of Force |
1:17 | |
| |
| Units of Force |
1:20 | |
| |
| How Much is a Newton? |
1:25 | |
| |
| Contact Forces |
1:47 | |
| |
| Field Forces |
2:32 | |
| |
What is a Net Force? |
2:53 | |
| |
| What is a Net Force? |
2:54 | |
| |
What Does It Mean? |
4:35 | |
| |
| What Does It Mean? |
4:36 | |
| |
Objects at Rest |
4:52 | |
| |
| Objects at Rest |
4:53 | |
| |
Objects in Motion |
5:12 | |
| |
| Objects in Motion |
5:13 | |
| |
Equilibrium |
6:03 | |
| |
| Static Equilibrium |
6:04 | |
| |
| Mechanical Equilibrium |
6:22 | |
| |
| Translational Equilibrium |
6:38 | |
| |
Inertia |
6:48 | |
| |
| Inertia |
6:49 | |
| |
| Inertial Mass |
6:58 | |
| |
| Gravitational Mass |
7:11 | |
| |
Example I: Inertia |
7:40 | |
| |
Example II: Inertia |
8:03 | |
| |
Example III: Translational Equilibrium |
8:25 | |
| |
Example IV: Net Force |
9:19 | |
| |
Free Body Diagrams |
10:34 | |
| |
| Free Body Diagrams Overview |
10:35 | |
| |
Falling Elephant: Free Body Diagram |
10:53 | |
| |
| Free Body Diagram Neglecting Air Resistance |
10:54 | |
| |
| Free Body Diagram Including Air Resistance |
11:22 | |
| |
Soda on Table |
11:54 | |
| |
| Free Body Diagram for a Glass of Soda Sitting on a Table |
11:55 | |
| |
Free Body Diagram for Box on Ramp |
13:38 | |
| |
| Free Body Diagram for Box on Ramp |
13:39 | |
| |
| Pseudo- Free Body Diagram |
15:26 | |
| |
Example V: Translational Equilibrium |
18:35 | |
|
Newton's Second & Third Laws of Motion |
23:57 |
| |
Intro |
0:00 | |
| |
Objectives |
0:09 | |
| |
Newton's 2nd Law of Motion |
0:36 | |
| |
| Newton's 2nd Law of Motion |
0:37 | |
| |
Applying Newton's 2nd Law |
1:12 | |
| |
| Step 1 |
1:13 | |
| |
| Step 2 |
1:18 | |
| |
| Step 3 |
1:27 | |
| |
| Step 4 |
1:36 | |
| |
Example I: Block on a Surface |
1:42 | |
| |
Example II: Concurrent Forces |
2:42 | |
| |
Mass vs. Weight |
4:09 | |
| |
| Mass |
4:10 | |
| |
| Weight |
4:28 | |
| |
Example III: Mass vs. Weight |
4:45 | |
| |
Example IV: Translational Equilibrium |
6:43 | |
| |
Example V: Translational Equilibrium |
8:23 | |
| |
Example VI: Determining Acceleration |
10:13 | |
| |
Example VII: Stopping a Baseball |
12:38 | |
| |
Example VIII: Steel Beams |
14:11 | |
| |
Example IX: Tension Between Blocks |
17:03 | |
| |
Example X: Banked Curves |
18:57 | |
| |
Example XI: Tension in Cords |
24:03 | |
| |
Example XII: Graphical Interpretation |
27:13 | |
| |
Example XIII: Force from Velocity |
28:12 | |
| |
Newton's 3rd Law |
29:16 | |
| |
| Newton's 3rd Law |
29:17 | |
| |
Examples - Newton's 3rd Law |
30:01 | |
| |
| Examples - Newton's 3rd Law |
30:02 | |
| |
Action-Reaction Pairs |
30:40 | |
| |
| Girl Kicking Soccer Ball |
30:41 | |
| |
| Rocket Ship in Space |
31:02 | |
| |
| Gravity on You |
31:23 | |
| |
Example XIV: Force of Gravity |
32:11 | |
| |
Example XV: Sailboat |
32:38 | |
| |
Example XVI: Hammer and Nail |
33:18 | |
| |
Example XVII: Net Force |
33:47 | |
|
Friction |
20:41 |
| |
Intro |
0:00 | |
| |
Objectives |
0:06 | |
| |
Coefficient of Friction |
0:21 | |
| |
| Coefficient of Friction |
0:22 | |
| |
| Approximate Coefficients of Friction |
0:44 | |
| |
Kinetic or Static? |
1:21 | |
| |
| Sled Sliding Down a Snowy Hill |
1:22 | |
| |
| Refrigerator at Rest that You Want to Move |
1:32 | |
| |
| Car with Tires Rolling Freely |
1:49 | |
| |
| Car Skidding Across Pavement |
2:01 | |
| |
Example I: Car Sliding |
2:21 | |
| |
Example II: Block on Incline |
3:04 | |
| |
Calculating the Force of Friction |
3:33 | |
| |
| Calculating the Force of Friction |
3:34 | |
| |
Example III: Finding the Frictional Force |
4:02 | |
| |
Example IV: Box on Wood Surface |
5:34 | |
| |
Example V: Static vs. Kinetic Friction |
7:35 | |
| |
Example VI: Drag Force on Airplane |
7:58 | |
| |
Example VII: Pulling a Sled |
8:41 | |
| |
Example VIII: AP-C 2007 FR1 |
13:23 | |
| |
| Example VIII: Part A |
13:24 | |
| |
| Example VIII: Part B |
14:40 | |
| |
| Example VIII: Part C |
15:19 | |
| |
| Example VIII: Part D |
17:08 | |
| |
| Example VIII: Part E |
18:24 | |
|
Retarding & Drag Forces |
32:10 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
Retarding Forces |
0:41 | |
| |
| Retarding Forces |
0:42 | |
| |
The Skydiver |
1:30 | |
| |
| Drag Forces on a Free-falling Object |
1:31 | |
| |
Velocity as a Function of Time |
5:31 | |
| |
| Velocity as a Function of Time |
5:32 | |
| |
Velocity as a Function of Time, cont. |
12:27 | |
| |
| Acceleration |
12:28 | |
| |
Velocity as a Function of Time, cont. |
15:16 | |
| |
| Graph: Acceleration vs. Time |
16:06 | |
| |
| Graph: Velocity vs. Time |
16:40 | |
| |
| Graph: Displacement vs. Time |
17:04 | |
| |
Example I: AP-C 2005 FR1 |
17:43 | |
| |
| Example I: Part A |
17:44 | |
| |
| Example I: Part B |
19:17 | |
| |
| Example I: Part C |
20:17 | |
| |
| Example I: Part D |
21:09 | |
| |
| Example I: Part E |
22:42 | |
| |
Example II: AP-C 2013 FR2 |
24:26 | |
| |
| Example II: Part A |
24:27 | |
| |
| Example II: Part B |
25:25 | |
| |
| Example II: Part C |
26:22 | |
| |
| Example II: Part D |
27:04 | |
| |
| Example II: Part E |
30:50 | |
|
Ramps & Inclines |
20:31 |
| |
Intro |
0:00 | |
| |
Objectives |
0:06 | |
| |
Drawing Free Body Diagrams for Ramps |
0:32 | |
| |
| Step 1: Choose the Object & Draw It as a Dot or Box |
0:33 | |
| |
| Step 2: Draw and Label all the External Forces |
0:39 | |
| |
| Step 3: Sketch a Coordinate System |
0:42 | |
| |
| Example: Object on a Ramp |
0:52 | |
| |
Pseudo-Free Body Diagrams |
2:06 | |
| |
| Pseudo-Free Body Diagrams |
2:07 | |
| |
| Redraw Diagram with All Forces Parallel to Axes |
2:18 | |
| |
Box on a Ramp |
4:08 | |
| |
| Free Body Diagram for Box on a Ramp |
4:09 | |
| |
| Pseudo-Free Body Diagram for Box on a Ramp |
4:54 | |
| |
Example I: Box at Rest |
6:13 | |
| |
Example II: Box Held By Force |
6:35 | |
| |
Example III: Truck on a Hill |
8:46 | |
| |
Example IV: Force Up a Ramp |
9:29 | |
| |
Example V: Acceleration Down a Ramp |
12:01 | |
| |
Example VI: Able of Repose |
13:59 | |
| |
Example VII: Sledding |
17:03 | |
|
Atwood Machines |
24:58 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
What is an Atwood Machine? |
0:25 | |
| |
| What is an Atwood Machine? |
0:26 | |
| |
Properties of Atwood Machines |
1:03 | |
| |
| Ideal Pulleys are Frictionless and Massless |
1:04 | |
| |
| Tension is Constant |
1:14 | |
| |
Setup for Atwood Machines |
1:26 | |
| |
| Setup for Atwood Machines |
1:27 | |
| |
Solving Atwood Machine Problems |
1:52 | |
| |
| Solving Atwood Machine Problems |
1:53 | |
| |
Alternate Solution |
5:24 | |
| |
| Analyze the System as a Whole |
5:25 | |
| |
Example I: Basic Atwood Machine |
7:31 | |
| |
Example II: Moving Masses |
9:59 | |
| |
Example III: Masses and Pulley on a Table |
13:32 | |
| |
Example IV: Mass and Pulley on a Ramp |
15:47 | |
| |
Example V: Ranking Atwood Machines |
19:50 | |
Section 4: Work, Energy, & Power |
|
Work |
37:34 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
What is Work? |
0:36 | |
| |
| What is Work? |
0:37 | |
| |
| Units of Work |
1:09 | |
| |
Work in One Dimension |
1:31 | |
| |
| Work in One Dimension |
1:32 | |
| |
Examples of Work |
2:19 | |
| |
| Stuntman in a Jet Pack |
2:20 | |
| |
| A Girl Struggles to Push Her Stalled Car |
2:50 | |
| |
| A Child in a Ghost Costume Carries a Bag of Halloween Candy Across the Yard |
3:24 | |
| |
Example I: Moving a Refrigerator |
4:03 | |
| |
Example II: Liberating a Car |
4:53 | |
| |
Example III: Lifting Box |
5:30 | |
| |
Example IV: Pulling a Wagon |
6:13 | |
| |
Example V: Ranking Work on Carts |
7:13 | |
| |
Non-Constant Forces |
12:21 | |
| |
| Non-Constant Forces |
12:22 | |
| |
Force vs. Displacement Graphs |
13:49 | |
| |
| Force vs. Displacement Graphs |
13:50 | |
| |
Hooke's Law |
14:41 | |
| |
| Hooke's Law |
14:42 | |
| |
Determining the Spring Constant |
15:38 | |
| |
| Slope of the Graph Gives the Spring Constant, k |
15:39 | |
| |
Work Done in Compressing the Spring |
16:34 | |
| |
| Find the Work Done in Compressing the String |
16:35 | |
| |
Example VI: Finding Spring Constant |
17:21 | |
| |
Example VII: Calculating Spring Constant |
19:48 | |
| |
Example VIII: Hooke's Law |
20:30 | |
| |
Example IX: Non-Linear Spring |
22:18 | |
| |
Work in Multiple Dimensions |
23:52 | |
| |
| Work in Multiple Dimensions |
23:53 | |
| |
Work-Energy Theorem |
25:25 | |
| |
| Work-Energy Theorem |
25:26 | |
| |
Example X: Work-Energy Theorem |
28:35 | |
| |
Example XI: Work Done on Moving Carts |
30:46 | |
| |
Example XII: Velocity from an F-d Graph |
35:01 | |
|
Energy & Conservative Forces |
28:04 |
| |
Intro |
0:00 | |
| |
Objectives |
0:08 | |
| |
Energy Transformations |
0:31 | |
| |
| Energy Transformations |
0:32 | |
| |
| Work-Energy Theorem |
0:57 | |
| |
Kinetic Energy |
1:12 | |
| |
| Kinetic Energy: Definition |
1:13 | |
| |
| Kinetic Energy: Equation |
1:55 | |
| |
Example I: Frog-O-Cycle |
2:07 | |
| |
Potential Energy |
2:46 | |
| |
| Types of Potential Energy |
2:47 | |
| |
| A Potential Energy Requires an Interaction between Objects |
3:29 | |
| |
Internal energy |
3:50 | |
| |
| Internal Energy |
3:51 | |
| |
Types of Energy |
4:37 | |
| |
| Types of Potential & Kinetic Energy |
4:38 | |
| |
Gravitational Potential Energy |
5:42 | |
| |
| Gravitational Potential Energy |
5:43 | |
| |
Example II: Potential Energy |
7:27 | |
| |
Example III: Kinetic and Potential Energy |
8:16 | |
| |
Example IV: Pendulum |
9:09 | |
| |
Conservative Forces |
11:37 | |
| |
| Conservative Forces Overview |
11:38 | |
| |
| Type of Conservative Forces |
12:42 | |
| |
| Types of Non-conservative Forces |
13:02 | |
| |
Work Done by Conservative Forces |
13:28 | |
| |
| Work Done by Conservative Forces |
13:29 | |
| |
Newton's Law of Universal Gravitation |
14:18 | |
| |
| Gravitational Force of Attraction between Any Two Objects with Mass |
14:19 | |
| |
Gravitational Potential Energy |
15:27 | |
| |
| Gravitational Potential Energy |
15:28 | |
| |
Elastic Potential Energy |
17:36 | |
| |
| Elastic Potential Energy |
17:37 | |
| |
Force from Potential Energy |
18:51 | |
| |
| Force from Potential Energy |
18:52 | |
| |
Gravitational Force from the Gravitational Potential Energy |
20:46 | |
| |
| Gravitational Force from the Gravitational Potential Energy |
20:47 | |
| |
Hooke's Law from Potential Energy |
22:04 | |
| |
| Hooke's Law from Potential Energy |
22:05 | |
| |
Summary |
23:16 | |
| |
| Summary |
23:17 | |
| |
Example V: Kinetic Energy of a Mass |
24:40 | |
| |
Example VI: Force from Potential Energy |
25:48 | |
| |
Example VII: Work on a Spinning Disc |
26:54 | |
|
Conservation of Energy |
54:56 |
| |
Intro |
0:00 | |
| |
Objectives |
0:09 | |
| |
Conservation of Mechanical Energy |
0:32 | |
| |
| Consider a Single Conservative Force Doing Work on a Closed System |
0:33 | |
| |
Non-Conservative Forces |
1:40 | |
| |
| Non-Conservative Forces |
1:41 | |
| |
| Work Done by a Non-conservative Force |
1:47 | |
| |
| Formula: Total Energy |
1:54 | |
| |
| Formula: Total Mechanical Energy |
2:04 | |
| |
Example I: Falling Mass |
2:15 | |
| |
Example II: Law of Conservation of Energy |
4:07 | |
| |
Example III: The Pendulum |
6:34 | |
| |
Example IV: Cart Compressing a Spring |
10:12 | |
| |
Example V: Cart Compressing a Spring |
11:12 | |
| |
| Example V: Part A - Potential Energy Stored in the Compressed Spring |
11:13 | |
| |
| Example V: Part B - Maximum Vertical Height |
12:01 | |
| |
Example VI: Car Skidding to a Stop |
13:05 | |
| |
Example VII: Block on Ramp |
14:22 | |
| |
Example VIII: Energy Transfers |
16:15 | |
| |
Example IX: Roller Coaster |
20:04 | |
| |
Example X: Bungee Jumper |
23:32 | |
| |
| Example X: Part A - Speed of the Jumper at a Height of 15 Meters Above the Ground |
24:48 | |
| |
| Example X: Part B - Speed of the Jumper at a Height of 30 Meters Above the Ground |
26:53 | |
| |
| Example X: Part C - How Close Does the Jumper Get to the Ground? |
28:28 | |
| |
Example XI: AP-C 2002 FR3 |
30:28 | |
| |
| Example XI: Part A |
30:59 | |
| |
| Example XI: Part B |
31:54 | |
| |
| Example XI: Part C |
32:50 | |
| |
| Example XI: Part D & E |
33:52 | |
| |
Example XII: AP-C 2007 FR3 |
35:24 | |
| |
| Example XII: Part A |
35:52 | |
| |
| Example XII: Part B |
36:27 | |
| |
| Example XII: Part C |
37:48 | |
| |
| Example XII: Part D |
39:32 | |
| |
Example XIII: AP-C 2010 FR1 |
41:07 | |
| |
| Example XIII: Part A |
41:34 | |
| |
| Example XIII: Part B |
43:05 | |
| |
| Example XIII: Part C |
45:24 | |
| |
| Example XIII: Part D |
47:18 | |
| |
Example XIV: AP-C 2013 FR1 |
48:25 | |
| |
| Example XIV: Part A |
48:50 | |
| |
| Example XIV: Part B |
49:31 | |
| |
| Example XIV: Part C |
51:27 | |
| |
| Example XIV: Part D |
52:46 | |
| |
| Example XIV: Part E |
53:25 | |
|
Power |
16:44 |
| |
Intro |
0:00 | |
| |
Objectives |
0:06 | |
| |
Defining Power |
0:20 | |
| |
| Definition of Power |
0:21 | |
| |
| Units of Power |
0:27 | |
| |
| Average Power |
0:43 | |
| |
Instantaneous Power |
1:03 | |
| |
| Instantaneous Power |
1:04 | |
| |
Example I: Horizontal Box |
2:07 | |
| |
Example II: Accelerating Truck |
4:48 | |
| |
Example III: Motors Delivering Power |
6:00 | |
| |
Example IV: Power Up a Ramp |
7:00 | |
| |
Example V: Power from Position Function |
8:51 | |
| |
Example VI: Motorcycle Stopping |
10:48 | |
| |
Example VII: AP-C 2003 FR1 |
11:52 | |
| |
| Example VII: Part A |
11:53 | |
| |
| Example VII: Part B |
12:50 | |
| |
| Example VII: Part C |
14:36 | |
| |
| Example VII: Part D |
15:52 | |
Section 5: Momentum |
|
Momentum & Impulse |
13:09 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
Momentum |
0:39 | |
| |
| Definition of Momentum |
0:40 | |
| |
| Total Momentum |
1:00 | |
| |
| Formula for Momentum |
1:05 | |
| |
| Units of Momentum |
1:11 | |
| |
Example I: Changing Momentum |
1:18 | |
| |
Impulse |
2:27 | |
| |
| Impulse |
2:28 | |
| |
Example II: Impulse |
2:41 | |
| |
Relationship Between Force and ∆p (Impulse) |
3:36 | |
| |
| Relationship Between Force and ∆p (Impulse) |
3:37 | |
| |
Example III: Force from Momentum |
4:37 | |
| |
Impulse-Momentum Theorem |
5:14 | |
| |
| Impulse-Momentum Theorem |
5:15 | |
| |
Example IV: Impulse-Momentum |
6:26 | |
| |
Example V: Water Gun & Horizontal Force |
7:56 | |
| |
Impulse from F-t Graphs |
8:53 | |
| |
| Impulse from F-t Graphs |
8:54 | |
| |
Example VI: Non-constant Forces |
9:16 | |
| |
Example VII: F-t Graph |
10:01 | |
| |
Example VIII: Impulse from Force |
11:19 | |
|
Conservation of Linear Momentum |
46:30 |
| |
Intro |
0:00 | |
| |
Objectives |
0:08 | |
| |
Conservation of Linear Momentum |
0:28 | |
| |
| In an Isolated System |
0:29 | |
| |
| In Any Closed System |
0:37 | |
| |
| Direct Outcome of Newton's 3rd Law of Motion |
0:47 | |
| |
Collisions and Explosions |
1:07 | |
| |
| Collisions and Explosions |
1:08 | |
| |
| The Law of Conservation of Linear Momentum |
1:25 | |
| |
Solving Momentum Problems |
1:35 | |
| |
| Solving Momentum Problems |
1:36 | |
| |
Types of Collisions |
2:08 | |
| |
| Elastic Collision |
2:09 | |
| |
| Inelastic Collision |
2:34 | |
| |
Example I: Traffic Collision |
3:00 | |
| |
Example II: Collision of Two Moving Objects |
6:55 | |
| |
Example III: Recoil Velocity |
9:47 | |
| |
Example IV: Atomic Collision |
12:12 | |
| |
Example V: Collision in Multiple Dimensions |
18:11 | |
| |
Example VI: AP-C 2001 FR1 |
25:16 | |
| |
| Example VI: Part A |
25:33 | |
| |
| Example VI: Part B |
26:44 | |
| |
| Example VI: Part C |
28:17 | |
| |
| Example VI: Part D |
28:58 | |
| |
Example VII: AP-C 2002 FR1 |
30:10 | |
| |
| Example VII: Part A |
30:20 | |
| |
| Example VII: Part B |
32:14 | |
| |
| Example VII: Part C |
34:25 | |
| |
| Example VII: Part D |
36:17 | |
| |
Example VIII: AP-C 2014 FR1 |
38:55 | |
| |
| Example VIII: Part A |
39:28 | |
| |
| Example VIII: Part B |
41:00 | |
| |
| Example VIII: Part C |
42:57 | |
| |
| Example VIII: Part D |
44:20 | |
|
Center of Mass |
28:26 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
Center of Mass |
0:45 | |
| |
| Center of Mass |
0:46 | |
| |
Finding Center of Mass by Inspection |
1:25 | |
| |
| For Uniform Density Objects |
1:26 | |
| |
| For Objects with Multiple Parts |
1:36 | |
| |
| For Irregular Objects |
1:44 | |
| |
Example I: Center of Mass by Inspection |
2:06 | |
| |
Calculating Center of Mass for Systems of Particles |
2:25 | |
| |
| Calculating Center of Mass for Systems of Particles |
2:26 | |
| |
Example II: Center of Mass (1D) |
3:15 | |
| |
Example III: Center of Mass of Continuous System |
4:29 | |
| |
Example IV: Center of Mass (2D) |
6:00 | |
| |
Finding Center of Mass by Integration |
7:38 | |
| |
| Finding Center of Mass by Integration |
7:39 | |
| |
Example V: Center of Mass of a Uniform Rod |
8:10 | |
| |
Example VI: Center of Mass of a Non-Uniform Rod |
11:40 | |
| |
Center of Mass Relationships |
14:44 | |
| |
| Center of Mass Relationships |
14:45 | |
| |
Center of Gravity |
17:36 | |
| |
| Center of Gravity |
17:37 | |
| |
| Uniform Gravitational Field vs. Non-uniform Gravitational Field |
17:53 | |
| |
Example VII: AP-C 2004 FR1 |
18:26 | |
| |
| Example VII: Part A |
18:45 | |
| |
| Example VII: Part B |
19:38 | |
| |
| Example VII: Part C |
21:03 | |
| |
| Example VII: Part D |
22:04 | |
| |
| Example VII: Part E |
24:52 | |
Section 6: Uniform Circular Motion |
|
Uniform Circular Motion |
21:36 |
| |
Intro |
0:00 | |
| |
Objectives |
0:08 | |
| |
Uniform Circular Motion |
0:42 | |
| |
| Distance Around the Circle for Objects Traveling in a Circular Path at Constant Speed |
0:51 | |
| |
| Average Speed for Objects Traveling in a Circular Path at Constant Speed |
1:15 | |
| |
Frequency |
1:42 | |
| |
| Definition of Frequency |
1:43 | |
| |
| Symbol of Frequency |
1:46 | |
| |
| Units of Frequency |
1:49 | |
| |
Period |
2:04 | |
| |
| Period |
2:05 | |
| |
Frequency and Period |
2:19 | |
| |
| Frequency and Period |
2:20 | |
| |
Example I: Race Car |
2:32 | |
| |
Example II: Toy Train |
3:22 | |
| |
Example III: Round-A-Bout |
4:07 | |
| |
| Example III: Part A - Period of the Motion |
4:08 | |
| |
| Example III: Part B- Frequency of the Motion |
4:43 | |
| |
| Example III: Part C- Speed at Which Alan Revolves |
4:58 | |
| |
Uniform Circular Motion |
5:28 | |
| |
| Is an Object Undergoing Uniform Circular Motion Accelerating? |
5:29 | |
| |
Direction of Centripetal Acceleration |
6:21 | |
| |
| Direction of Centripetal Acceleration |
6:22 | |
| |
Magnitude of Centripetal Acceleration |
8:23 | |
| |
| Magnitude of Centripetal Acceleration |
8:24 | |
| |
Example IV: Car on a Track |
8:39 | |
| |
Centripetal Force |
10:14 | |
| |
| Centripetal Force |
10:15 | |
| |
Calculating Centripetal Force |
11:47 | |
| |
| Calculating Centripetal Force |
11:48 | |
| |
Example V: Acceleration |
12:41 | |
| |
Example VI: Direction of Centripetal Acceleration |
13:44 | |
| |
Example VII: Loss of Centripetal Force |
14:03 | |
| |
Example VIII: Bucket in Horizontal Circle |
14:44 | |
| |
Example IX: Bucket in Vertical Circle |
15:24 | |
| |
Example X: Demon Drop |
17:38 | |
| |
| Example X: Question 1 |
18:02 | |
| |
| Example X: Question 2 |
18:25 | |
| |
| Example X: Question 3 |
19:22 | |
| |
| Example X: Question 4 |
20:13 | |
Section 7: Rotational Motion |
|
Rotational Kinematics |
32:52 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
Radians and Degrees |
0:35 | |
| |
| Once Around a Circle: In Degrees |
0:36 | |
| |
| Once Around a Circle: In Radians |
0:48 | |
| |
| Measurement of Radian |
0:51 | |
| |
Example I: Radian and Degrees |
1:08 | |
| |
| Example I: Convert 90° to Radians |
1:09 | |
| |
| Example I: Convert 6 Radians to Degree |
1:23 | |
| |
Linear vs. Angular Displacement |
1:43 | |
| |
| Linear Displacement |
1:44 | |
| |
| Angular Displacement |
1:51 | |
| |
Linear vs. Angular Velocity |
2:04 | |
| |
| Linear Velocity |
2:05 | |
| |
| Angular Velocity |
2:10 | |
| |
Direction of Angular Velocity |
2:28 | |
| |
| Direction of Angular Velocity |
2:29 | |
| |
Converting Linear to Angular Velocity |
2:58 | |
| |
| Converting Linear to Angular Velocity |
2:59 | |
| |
Example II: Angular Velocity of Earth |
3:51 | |
| |
Linear vs. Angular Acceleration |
4:35 | |
| |
| Linear Acceleration |
4:36 | |
| |
| Angular Acceleration |
4:42 | |
| |
Example III: Angular Acceleration |
5:09 | |
| |
Kinematic Variable Parallels |
6:30 | |
| |
| Kinematic Variable Parallels: Translational & Angular |
6:31 | |
| |
Variable Translations |
7:00 | |
| |
| Variable Translations: Translational & Angular |
7:01 | |
| |
Kinematic Equation Parallels |
7:38 | |
| |
| Kinematic Equation Parallels: Translational & Rotational |
7:39 | |
| |
Example IV: Deriving Centripetal Acceleration |
8:29 | |
| |
Example V: Angular Velocity |
13:24 | |
| |
| Example V: Part A |
13:25 | |
| |
| Example V: Part B |
14:15 | |
| |
Example VI: Wheel in Motion |
14:39 | |
| |
Example VII: AP-C 2003 FR3 |
16:23 | |
| |
| Example VII: Part A |
16:38 | |
| |
| Example VII: Part B |
17:34 | |
| |
| Example VII: Part C |
24:02 | |
| |
Example VIII: AP-C 2014 FR2 |
25:35 | |
| |
| Example VIII: Part A |
25:47 | |
| |
| Example VIII: Part B |
26:28 | |
| |
| Example VIII: Part C |
27:48 | |
| |
| Example VIII: Part D |
28:26 | |
| |
| Example VIII: Part E |
29:16 | |
|
Moment of Inertia |
24:00 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
Types of Inertia |
0:34 | |
| |
| Inertial Mass |
0:35 | |
| |
| Moment of Inertia |
0:44 | |
| |
Kinetic Energy of a Rotating Disc |
1:25 | |
| |
| Kinetic Energy of a Rotating Disc |
1:26 | |
| |
Calculating Moment of Inertia (I) |
5:32 | |
| |
| Calculating Moment of Inertia (I) |
5:33 | |
| |
Moment of Inertia for Common Objects |
5:49 | |
| |
| Moment of Inertia for Common Objects |
5:50 | |
| |
Example I: Point Masses |
6:46 | |
| |
Example II: Uniform Rod |
9:09 | |
| |
Example III: Solid Cylinder |
13:07 | |
| |
Parallel Axis Theorem (PAT) |
17:33 | |
| |
| Parallel Axis Theorem (PAT) |
17:34 | |
| |
Example IV: Calculating I Using the Parallel Axis Theorem |
18:39 | |
| |
Example V: Hollow Sphere |
20:18 | |
| |
Example VI: Long Thin Rod |
20:55 | |
| |
Example VII: Ranking Moment of Inertia |
21:50 | |
| |
Example VIII: Adjusting Moment of Inertia |
22:39 | |
|
Torque |
26:09 |
| |
Intro |
0:00 | |
| |
Objectives |
0:06 | |
| |
Torque |
0:18 | |
| |
| Definition of Torque |
0:19 | |
| |
| Torque & Rotation |
0:26 | |
| |
| Lever Arm ( r ) |
0:30 | |
| |
| Example: Wrench |
0:39 | |
| |
Direction of the Torque Vector |
1:45 | |
| |
| Direction of the Torque Vector |
1:46 | |
| |
| Finding Direction Using the Right-hand Rule |
1:53 | |
| |
Newton's 2nd Law: Translational vs. Rotational |
2:20 | |
| |
| Newton's 2nd Law: Translational vs. Rotational |
2:21 | |
| |
Equilibrium |
3:17 | |
| |
| Static Equilibrium |
3:18 | |
| |
| Dynamic Equilibrium |
3:30 | |
| |
Example I: See-Saw Problem |
3:46 | |
| |
Example II: Beam Problem |
7:12 | |
| |
Example III: Pulley with Mass |
10:34 | |
| |
Example IV: Net Torque |
13:46 | |
| |
Example V: Ranking Torque |
15:29 | |
| |
Example VI: Ranking Angular Acceleration |
16:25 | |
| |
Example VII: Café Sign |
17:19 | |
| |
Example VIII: AP-C 2008 FR2 |
19:44 | |
| |
| Example VIII: Part A |
20:12 | |
| |
| Example VIII: Part B |
21:08 | |
| |
| Example VIII: Part C |
22:36 | |
| |
| Example VIII: Part D |
24:37 | |
|
Rotational Dynamics |
56:58 |
| |
Intro |
0:00 | |
| |
Objectives |
0:08 | |
| |
Conservation of Energy |
0:48 | |
| |
| Translational Kinetic Energy |
0:49 | |
| |
| Rotational Kinetic Energy |
0:54 | |
| |
| Total Kinetic Energy |
1:03 | |
| |
Example I: Disc Rolling Down an Incline |
1:10 | |
| |
Rotational Dynamics |
4:25 | |
| |
| Rotational Dynamics |
4:26 | |
| |
Example II: Strings with Massive Pulleys |
4:37 | |
| |
Example III: Rolling without Slipping |
9:13 | |
| |
Example IV: Rolling with Slipping |
13:45 | |
| |
Example V: Amusement Park Swing |
22:49 | |
| |
Example VI: AP-C 2002 FR2 |
26:27 | |
| |
| Example VI: Part A |
26:48 | |
| |
| Example VI: Part B |
27:30 | |
| |
| Example VI: Part C |
29:51 | |
| |
| Example VI: Part D |
30:50 | |
| |
Example VII: AP-C 2006 FR3 |
31:39 | |
| |
| Example VII: Part A |
31:49 | |
| |
| Example VII: Part B |
36:20 | |
| |
| Example VII: Part C |
37:14 | |
| |
| Example VII: Part D |
38:48 | |
| |
Example VIII: AP-C 2010 FR2 |
39:40 | |
| |
| Example VIII: Part A |
39:46 | |
| |
| Example VIII: Part B |
40:44 | |
| |
| Example VIII: Part C |
44:31 | |
| |
| Example VIII: Part D |
46:44 | |
| |
Example IX: AP-C 2013 FR3 |
48:27 | |
| |
| Example IX: Part A |
48:47 | |
| |
| Example IX: Part B |
50:33 | |
| |
| Example IX: Part C |
53:28 | |
| |
| Example IX: Part D |
54:15 | |
| |
| Example IX: Part E |
56:20 | |
|
Angular Momentum |
33:02 |
| |
Intro |
0:00 | |
| |
Objectives |
0:09 | |
| |
Linear Momentum |
0:44 | |
| |
| Definition of Linear Momentum |
0:45 | |
| |
| Total Angular Momentum |
0:52 | |
| |
| p = mv |
0:59 | |
| |
Angular Momentum |
1:08 | |
| |
| Definition of Angular Momentum |
1:09 | |
| |
| Total Angular Momentum |
1:21 | |
| |
| A Mass with Velocity v Moving at Some Position r |
1:29 | |
| |
Calculating Angular Momentum |
1:44 | |
| |
| Calculating Angular Momentum |
1:45 | |
| |
Spin Angular Momentum |
4:17 | |
| |
| Spin Angular Momentum |
4:18 | |
| |
Example I: Object in Circular Orbit |
4:51 | |
| |
Example II: Angular Momentum of a Point Particle |
6:34 | |
| |
Angular Momentum and Net Torque |
9:03 | |
| |
| Angular Momentum and Net Torque |
9:04 | |
| |
Conservation of Angular Momentum |
11:53 | |
| |
| Conservation of Angular Momentum |
11:54 | |
| |
Example III: Ice Skater Problem |
12:20 | |
| |
Example IV: Combining Spinning Discs |
13:52 | |
| |
Example V: Catching While Rotating |
15:13 | |
| |
Example VI: Changes in Angular Momentum |
16:47 | |
| |
Example VII: AP-C 2005 FR3 |
17:37 | |
| |
| Example VII: Part A |
18:12 | |
| |
| Example VII: Part B |
18:32 | |
| |
| Example VII: Part C |
19:53 | |
| |
| Example VII: Part D |
21:52 | |
| |
Example VIII: AP-C 2014 FR3 |
24:23 | |
| |
| Example VIII: Part A |
24:31 | |
| |
| Example VIII: Part B |
25:33 | |
| |
| Example VIII: Part C |
26:58 | |
| |
| Example VIII: Part D |
28:24 | |
| |
| Example VIII: Part E |
30:42 | |
Section 8: Oscillations |
|
Oscillations |
1:01:12 |
| |
Intro |
0:00 | |
| |
Objectives |
0:08 | |
| |
Simple Harmonic Motion |
0:45 | |
| |
| Simple Harmonic Motion |
0:46 | |
| |
Circular Motion vs. Simple Harmonic Motion (SHM) |
1:39 | |
| |
| Circular Motion vs. Simple Harmonic Motion (SHM) |
1:40 | |
| |
Position, Velocity, & Acceleration |
4:55 | |
| |
| Position |
4:56 | |
| |
| Velocity |
5:12 | |
| |
| Acceleration |
5:49 | |
| |
Frequency and Period |
6:37 | |
| |
| Frequency |
6:42 | |
| |
| Period |
6:49 | |
| |
Angular Frequency |
7:05 | |
| |
| Angular Frequency |
7:06 | |
| |
Example I: Oscillating System |
7:37 | |
| |
| Example I: Determine the Object's Angular Frequency |
7:38 | |
| |
| Example I: What is the Object's Position at Time t = 10s? |
8:16 | |
| |
| Example I: At What Time is the Object at x = 0.1m? |
9:10 | |
| |
Mass on a Spring |
10:17 | |
| |
| Mass on a Spring |
10:18 | |
| |
Example II: Analysis of Spring-Block System |
11:34 | |
| |
Example III: Spring-Block ranking |
12:53 | |
| |
General Form of Simple Harmonic Motion |
14:41 | |
| |
| General Form of Simple Harmonic Motion |
14:42 | |
| |
Graphing Simple Harmonic Motion (SHM) |
15:22 | |
| |
| Graphing Simple Harmonic Motion (SHM) |
15:23 | |
| |
Energy of Simple Harmonic Motion (SHM) |
15:49 | |
| |
| Energy of Simple Harmonic Motion (SHM) |
15:50 | |
| |
Horizontal Spring Oscillator |
19:24 | |
| |
| Horizontal Spring Oscillator |
19:25 | |
| |
Vertical Spring Oscillator |
20:58 | |
| |
| Vertical Spring Oscillator |
20:59 | |
| |
Springs in Series |
23:30 | |
| |
| Springs in Series |
23:31 | |
| |
Springs in Parallel |
26:08 | |
| |
| Springs in Parallel |
26:09 | |
| |
The Pendulum |
26:59 | |
| |
| The Pendulum |
27:00 | |
| |
Energy and the Simple Pendulum |
27:46 | |
| |
| Energy and the Simple Pendulum |
27:47 | |
| |
Frequency and Period of a Pendulum |
30:16 | |
| |
| Frequency and Period of a Pendulum |
30:17 | |
| |
Example IV: Deriving Period of a Simple Pendulum |
31:42 | |
| |
Example V: Deriving Period of a Physical Pendulum |
35:20 | |
| |
Example VI: Summary of Spring-Block System |
38:16 | |
| |
Example VII: Harmonic Oscillator Analysis |
44:14 | |
| |
| Example VII: Spring Constant |
44:24 | |
| |
| Example VII: Total Energy |
44:45 | |
| |
| Example VII: Speed at the Equilibrium Position |
45:05 | |
| |
| Example VII: Speed at x = 0.30 Meters |
45:37 | |
| |
| Example VII: Speed at x = -0.40 Meter |
46:46 | |
| |
| Example VII: Acceleration at the Equilibrium Position |
47:21 | |
| |
| Example VII: Magnitude of Acceleration at x = 0.50 Meters |
47:35 | |
| |
| Example VII: Net Force at the Equilibrium Position |
48:04 | |
| |
| Example VII: Net Force at x = 0.25 Meter |
48:20 | |
| |
| Example VII: Where does Kinetic Energy = Potential Energy? |
48:33 | |
| |
Example VIII: Ranking Spring Systems |
49:35 | |
| |
Example IX: Vertical Spring Block Oscillator |
51:45 | |
| |
Example X: Ranking Period of Pendulum |
53:50 | |
| |
Example XI: AP-C 2009 FR2 |
54:50 | |
| |
| Example XI: Part A |
54:58 | |
| |
| Example XI: Part B |
57:57 | |
| |
| Example XI: Part C |
59:11 | |
| |
Example XII: AP-C 2010 FR3 |
60:18 | |
| |
| Example XII: Part A |
60:49 | |
| |
| Example XII: Part B |
62:47 | |
| |
| Example XII: Part C |
64:30 | |
| |
| Example XII: Part D |
65:53 | |
| |
| Example XII: Part E |
68:13 | |
Section 9: Gravity & Orbits |
|
Gravity & Orbits |
34:59 |
| |
Intro |
0:00 | |
| |
Objectives |
0:07 | |
| |
Newton's Law of Universal Gravitation |
0:45 | |
| |
| Newton's Law of Universal Gravitation |
0:46 | |
| |
Example I: Gravitational Force Between Earth and Sun |
2:24 | |
| |
Example II: Two Satellites |
3:39 | |
| |
Gravitational Field Strength |
4:23 | |
| |
| Gravitational Field Strength |
4:24 | |
| |
Example III: Weight on Another Planet |
6:22 | |
| |
Example IV: Gravitational Field of a Hollow Shell |
7:31 | |
| |
Example V: Gravitational Field Inside a Solid Sphere |
8:33 | |
| |
Velocity in Circular Orbit |
12:05 | |
| |
| Velocity in Circular Orbit |
12:06 | |
| |
Period and Frequency for Circular Orbits |
13:56 | |
| |
| Period and Frequency for Circular Orbits |
13:57 | |
| |
Mechanical Energy for Circular Orbits |
16:11 | |
| |
| Mechanical Energy for Circular Orbits |
16:12 | |
| |
Escape Velocity |
17:48 | |
| |
| Escape Velocity |
17:49 | |
| |
Kepler's 1st Law of Planetary Motion |
19:41 | |
| |
| Keller's 1st Law of Planetary Motion |
19:42 | |
| |
Kepler's 2nd Law of Planetary Motion |
20:05 | |
| |
| Keller's 2nd Law of Planetary Motion |
20:06 | |
| |
Kepler's 3rd Law of Planetary Motion |
20:57 | |
| |
| Ratio of the Squares of the Periods of Two Planets |
20:58 | |
| |
| Ratio of the Squares of the Periods to the Cubes of Their Semi-major Axes |
21:41 | |
| |
Total Mechanical Energy for an Elliptical Orbit |
21:57 | |
| |
| Total Mechanical Energy for an Elliptical Orbit |
21:58 | |
| |
Velocity and Radius for an Elliptical Orbit |
22:35 | |
| |
| Velocity and Radius for an Elliptical Orbit |
22:36 | |
| |
Example VI: Rocket Launched Vertically |
24:26 | |
| |
Example VII: AP-C 2007 FR2 |
28:16 | |
| |
| Example VII: Part A |
28:35 | |
| |
| Example VII: Part B |
29:51 | |
| |
| Example VII: Part C |
31:14 | |
| |
| Example VII: Part D |
32:23 | |
| |
| Example VII: Part E |
33:16 | |
Section 10: Sample AP Exam |
|
1998 AP Practice Exam: Multiple Choice |
28:11 |
| |
Intro |
0:00 | |
| |
Problem 1 |
0:30 | |
| |
Problem 2 |
0:51 | |
| |
Problem 3 |
1:25 | |
| |
Problem 4 |
2:00 | |
| |
Problem 5 |
3:05 | |
| |
Problem 6 |
4:19 | |
| |
Problem 7 |
4:48 | |
| |
Problem 8 |
5:18 | |
| |
Problem 9 |
5:38 | |
| |
Problem 10 |
6:26 | |
| |
Problem 11 |
7:21 | |
| |
Problem 12 |
8:08 | |
| |
Problem 13 |
8:35 | |
| |
Problem 14 |
9:20 | |
| |
Problem 15 |
10:09 | |
| |
Problem 16 |
10:25 | |
| |
Problem 17 |
11:30 | |
| |
Problem 18 |
12:27 | |
| |
Problem 19 |
13:00 | |
| |
Problem 20 |
14:40 | |
| |
Problem 21 |
15:44 | |
| |
Problem 22 |
16:42 | |
| |
Problem 23 |
17:35 | |
| |
Problem 24 |
17:54 | |
| |
Problem 25 |
18:32 | |
| |
Problem 26 |
19:08 | |
| |
Problem 27 |
20:56 | |
| |
Problem 28 |
22:19 | |
| |
Problem 29 |
22:36 | |
| |
Problem 30 |
23:18 | |
| |
Problem 31 |
24:06 | |
| |
Problem 32 |
24:40 | |
|
1998 AP Practice Exam: Free Response Questions (FRQ) |
28:11 |
| |
Intro |
0:00 | |
| |
Question 1 |
0:15 | |
| |
| Part A: I |
0:16 | |
| |
| Part A: II |
0:46 | |
| |
| Part A: III |
1:13 | |
| |
| Part B |
1:40 | |
| |
| Part C |
2:49 | |
| |
| Part D: I |
4:46 | |
| |
| Part D: II |
5:15 | |
| |
Question 2 |
5:46 | |
| |
| Part A: I |
6:13 | |
| |
| Part A: II |
7:05 | |
| |
| Part B: I |
7:48 | |
| |
| Part B: II |
8:42 | |
| |
| Part B: III |
9:03 | |
| |
| Part B: IV |
9:26 | |
| |
| Part B: V |
11:32 | |
| |
Question 3 |
13:30 | |
| |
| Part A: I |
13:50 | |
| |
| Part A: II |
14:16 | |
| |
| Part A: III |
14:38 | |
| |
| Part A: IV |
14:56 | |
| |
| Part A: V |
15:36 | |
| |
| Part B |
16:11 | |
| |
| Part C |
17:00 | |
| |
| Part D: I |
19:56 | |
| |
| Part D: II |
21:08 | |