Home » Chemistry » Organic Chemistry
No. of
Lectures
Duration
(hrs:min)
42
54:03

Organic Chemistry Online Course Dr. Laurie Starkey, Ph.D.

4.9
1,393 ratings • 181 reviews
  • Level Advanced
  • 42 Lessons (54hr : 03min)
  • 23,846 already enrolled!
  • Audio: English
  • English

Join Dr. Laurie Starkey in her time-saving Organic Chemistry course that covers all concepts and labs with tons of examples. Dr. Starkey brings her love of organic chemistry coupled with visual models, real world examples, & clear explanations to make ochem finally understandable for all.

Table of Contents

Section 1: Introduction to Organic Molecules

  Introduction and Drawing Structures 49:51
   Intro 0:00 
   Organic Chemistry 0:07 
    Organic 0:08 
    Inorganic 0:26 
    Examples of Organic Compounds 1:16 
   Review Some Chemistry Basics 5:23 
    Electrons 5:42 
    Orbitals (s,p,d,f) 6:12 
   Review Some Chemistry Basics 7:35 
    Elements & Noble Gases 7:36 
    Atom & Valance Shell 8:47 
   Review Some Chemistry Basics 11:33 
    Electronegative Elements 11:34 
    Which Is More Electronegative, C or N? 13:45 
   Ionic & Covalent Bonds 14:07 
    Ionic Bonds 14:08 
    Covalent Bonds 16:17 
   Polar Covalent Bonds 19:35 
    Polar Covalent Bonds & Electronegativities 19:37 
   Polarity of Molecules 22:56 
    Linear molecule 23:07 
    Bent Molecule 23:53 
    No Polar Bonds 24:21 
    Ionic 24:52 
   Line Drawings 26:36 
    Line Drawing Overview 26:37 
    Line Drawing: Example 1 27:12 
    Line Drawing: Example 2 29:14 
    Line Drawing: Example 3 29:51 
    Line Drawing: Example 4 30:34 
    Line Drawing: Example 5 31:21 
    Line Drawing: Example 6 32:41 
   Diversity of Organic Compounds 33:57 
    Diversity of Organic Compounds 33:58 
   Diversity of Organic Compounds, cont. 39:16 
    Diversity of Organic Compounds, cont. 39:17 
   Examples of Polymers 45:26 
    Examples of Polymers 45:27 
  Lewis Structures & Resonance 44:25
   Intro 0:00 
   Lewis Structures 0:08 
    How to Draw a Lewis Structure 0:09 
    Examples 2:20 
   Lewis Structures 6:25 
    Examples: Lewis Structure 6:27 
    Determining Formal Charges 8:48 
    Example: Determining Formal Charges for Carbon 10:11 
    Example: Determining Formal Charges for Oxygen 11:02 
   Lewis Structures 12:08 
    Typical, Stable Bonding Patterns: Hydrogen 12:11 
    Typical, Stable Bonding Patterns: Carbon 12:58 
    Typical, Stable Bonding Patterns: Nitrogen 13:25 
    Typical, Stable Bonding Patterns: Oxygen 13:54 
    Typical, Stable Bonding Patterns: Halogen 14:16 
   Lewis Structure Example 15:17 
    Drawing a Lewis Structure for Nitric Acid 15:18 
   Resonance 21:58 
    Definition of Resonance 22:00 
    Delocalization 22:07 
    Hybrid Structure 22:38 
   Rules for Estimating Stability of Resonance Structures 26:04 
    Rule Number 1: Complete Octets 26:10 
    Rule Number 2: Separation of Charge 28:13 
    Rule Number 3: Negative and Positive Charges 30:02 
    Rule Number 4: Equivalent 31:06 
   Looking for Resonance 32:09 
    Lone Pair Next to a p Bond 32:10 
    Vacancy Next to a p Bond 33:53 
    p Bond Between Two Different Elements 35:00 
    Other Type of Resonance: Benzene 36:06 
   Resonance Example 37:29 
    Draw and Rank Resonance Forms 37:30 
  Acid-Base Reactions 1:07:46
   Intro 0:00 
   Acid-Base Reactions 0:07 
    Overview 0:08 
    Lewis Acid and Lewis Base 0:30 
    Example 1: Lewis Acid and Lewis Base 1:53 
    Example 2: Lewis Acid and Lewis Base 3:04 
   Acid-base Reactions 4:54 
    Bonsted-Lowry Acid and Bonsted-Lowry Base 4:56 
    Proton Transfer Reaction 5:36 
   Acid-Base Equilibrium 8:14 
    Two Acids in Competition = Equilibrium 8:15 
    Example: Which is the Stronger Acid? 8:40 
   Periodic Trends for Acidity 12:40 
    Across Row 12:41 
   Periodic Trends for Acidity 19:48 
    Energy Diagram 19:50 
   Periodic Trends for Acidity 21:28 
    Down a Family 21:29 
   Inductive Effects on Acidity 25:52 
    Example: Which is the Stronger Acid? 25:54 
    Other Electron-Withdrawing Group (EWG) 30:37 
   Inductive Effects on Acidity 32:55 
    Inductive Effects Decrease with Distance 32:56 
   Resonance Effects on Acidity 36:35 
    Examples of Resonance Effects on Acidity 36:36 
   Resonance Effects on Acidity 41:15 
    Small and Large Amount of Resonance 41:17 
   Acid-Base Example 43:10 
    Which is Most Acidic? Which is the Least Acidic? 43:12 
   Acid-Base Example 49:26 
    Which is the Stronger Base? 49:27 
   Acid-Base Example 53:58 
    Which is the Strongest Base? 53:59 
   Common Acids/Bases 60:45 
    Common Acids/Bases 60:46 
    Example: Determine the Direction of Equilibrium 64:51 
  Structures and Properties of Organic Molecules 1:23:35
   Intro 0:00 
   Orbitals and Bonding 0:20 
    Atomic Orbitals (AO) 0:21 
   Molecular Orbitals (MO) 1:46 
    Definition of Molecular Orbitals 1:47 
    Example 1: Formation of Sigma Bond and Molecular Orbitals 2:20 
   Molecular Orbitals (MO) 5:25 
    Example 2: Formation of Pi Bond 5:26 
   Overlapping E Levels of MO's 7:28 
    Energy Diagram 7:29 
   Electronic Transitions 9:18 
    Electronic Transitions 9:23 
   Hybrid Orbitals 12:04 
    Carbon AO 12:06 
    Hybridization 13:51 
   Hybrid Orbitals 15:02 
    Examples of Hybrid Orbitals 15:05 
    Example: Assign Hybridization 20:31 
   3-D Sketches 24:05 
    sp3 24:24 
    sp2 25:28 
    sp 27:41 
   3-D Sketches of Molecules 29:07 
    3-D Sketches of Molecules 1 29:08 
    3-D Sketches of Molecules 2 32:29 
    3-D Sketches of Molecules 3 35:36 
   3D Sketch 37:20 
    How to Draw 3D Sketch 37:22 
    Example 1: Drawing 3D Sketch 37:50 
    Example 2: Drawing 3D Sketch 43:04 
   Hybridization and Resonance 46:06 
    Example: Hybridization and Resonance 46:08 
   Physical Properties 49:55 
    Water Solubility, Boiling Points, and Intermolecular Forces 49:56 
    Types of 'Nonbonding' Interactions 51:47 
   Dipole-Dipole 52:37 
    Definition of Dipole-Dipole 52:39 
    Example: Dipole-Dipole Bonding 53:27 
   Hydrogen Bonding 57:14 
    Definition of Hydrogen Bonding 57:15 
    Example: Hydrogen Bonding 58:05 
   Van Der Waals/ London Forces 63:11 
    Van Der Waals/ London Forces 63:12 
    Example: Van Der Waals/ London Forces 64:59 
   Water Solubility 68:32 
    Water Solubility 68:34 
    Example: Water Solubility 69:05 
    Example: Acetone 71:29 
   Isomerism 73:51 
    Definition of Isomers 73:53 
    Constitutional Isomers and Example 74:17 
    Stereoisomers and Example 75:34 
   Introduction to Functional Groups 77:06 
    Functional Groups: Example, Abbreviation, and Name 77:07 
   Introduction to Functional Groups 80:48 
    Functional Groups: Example, Abbreviation, and Name 80:49 
  Alkane Structures 1:13:38
   Intro 0:00 
   Nomenclature of Alkanes 0:12 
    Nomenclature of Alkanes and IUPAC Rules 0:13 
    Examples: Nomenclature of Alkanes 4:38 
   Molecular Formula and Degrees of Unsaturation (DU) 17:24 
    Alkane Formula 17:25 
    Example: Heptane 17:58 
    Why '2n+2' Hydrogens? 18:35 
    Adding a Ring 19:20 
    Adding a p Bond 19:42 
    Example 1: Determine Degrees of Unsaturation (DU) 20:17 
    Example 2: Determine Degrees of Unsaturation (DU) 21:35 
    Example 3: Determine DU of Benzene 23:30 
   Molecular Formula and Degrees of Unsaturation (DU) 24:41 
    Example 4: Draw Isomers 24:42 
   Physical properties of Alkanes 29:17 
    Physical properties of Alkanes 29:18 
   Conformations of Alkanes 33:40 
    Conformational Isomers 33:42 
    Conformations of Ethane: Eclipsed and Staggered 34:40 
    Newman Projection of Ethane 36:15 
   Conformations of Ethane 40:38 
    Energy and Degrees Rotated Diagram 40:41 
   Conformations of Butane 42:28 
    Butane 42:29 
    Newman Projection of Butane 43:35 
   Conformations of Butane 44:25 
    Energy and Degrees Rotated Diagram 44:30 
   Cycloalkanes 51:26 
    Cyclopropane and Cyclobutane 51:27 
    Cyclopentane 53:56 
   Cycloalkanes 54:56 
    Cyclohexane: Chair, Boat, and Twist Boat Conformations 54:57 
   Drawing a Cyclohexane Chair 57:58 
    Drawing a Cyclohexane Chair 57:59 
    Newman Projection of Cyclohexane 62:14 
   Cyclohexane Chair Flips 64:06 
    Axial and Equatorial Groups 64:10 
    Example: Chair Flip on Methylcyclohexane 66:44 
   Cyclohexane Conformations Example 69:01 
    Chair Conformations of cis-1-t-butyl-4-methylcyclohexane 69:02 
  Stereochemistry 1:40:54
   Intro 0:00 
   Stereochemistry 0:10 
    Isomers 0:11 
   Stereoisomer Examples 1:30 
    Alkenes 1:31 
    Cycloalkanes 2:35 
   Stereoisomer Examples 4:00 
    Tetrahedral Carbon: Superimposable (Identical) 4:01 
    Tetrahedral Carbon: Non-Superimposable (Stereoisomers) 5:18 
   Chirality 7:18 
    Stereoisomers 7:19 
    Chiral 8:05 
    Achiral 8:29 
    Example: Achiral and Chiral 8:45 
   Chirality 20:11 
    Superimposable, Non-Superimposable, Chiral, and Achiral 20:12 
   Nomenclature 23:00 
    Cahn-Ingold-Prelog Rules 23:01 
   Nomenclature 29:39 
    Example 1: Nomenclature 29:40 
    Example 2: Nomenclature 31:49 
    Example 3: Nomenclature 33:24 
    Example 4: Nomenclature 35:39 
   Drawing Stereoisomers 36:58 
    Drawing (S)-2-bromopentane 36:59 
    Drawing the Enantiomer of (S)-2-bromopentane: Method 1 38:47 
    Drawing the Enantiomer of (S)-2-bromopentane: Method 2 39:35 
   Fischer Projections 41:47 
    Definition of Fischer Projections 41:49 
    Drawing Fischer Projection 43:43 
    Use of Fisher Projection: Assigning Configuration 49:13 
   Molecules with Two Chiral Carbons 51:49 
    Example A 51:42 
    Drawing Enantiomer of Example A 53:26 
    Fischer Projection of A 54:25 
   Drawing Stereoisomers, cont. 59:40 
    Drawing Stereoisomers Examples 59:41 
    Diastereomers 61:48 
   Drawing Stereoisomers 66:37 
    Draw All Stereoisomers of 2,3-dichlorobutane 66:38 
   Molecules with Two Chiral Centers 70:22 
    Draw All Stereoisomers of 2,3-dichlorobutane, cont. 70:23 
   Optical Activity 74:10 
    Chiral Molecules 74:11 
    Angle of Rotation 74:51 
    Achiral Species 76:46 
   Physical Properties of Stereoisomers 77:11 
    Enantiomers 77:12 
    Diastereomers 78:01 
    Example 78:26 
   Physical Properties of Stereoisomers 83:05 
    When Do Enantiomers Behave Differently? 83:06 
   Racemic Mixtures 88:18 
    Racemic Mixtures 88:21 
    Resolution 89:52 
   Unequal Mixtures of Enantiomers 92:54 
    Enantiomeric Excess (ee) 92:55 
   Unequal Mixture of Enantiomers 94:43 
    Unequal Mixture of Enantiomers 94:44 
    Example: Finding ee 96:38 
    Example: Percent of Composition 99:46 

Section 2: Understanding Organic Reactions

  Nomenclature 1:53:47
   Intro 0:00 
   Cycloalkane Nomenclature 0:17 
    Cycloalkane Nomenclature and Examples 0:18 
   Alkene Nomenclature 6:28 
    Alkene Nomenclature and Examples 6:29 
   Alkene Nomenclature: Stereochemistry 15:07 
    Alkenes With Two Groups: Cis & Trans 15:08 
    Alkenes With Greater Than Two Groups: E & Z 18:26 
   Alkyne Nomenclature 24:46 
    Alkyne Nomenclature and Examples 24:47 
    Alkane Has a Higher Priority Than Alkyne 28:25 
   Alcohol Nomenclature 29:24 
    Alcohol Nomenclature and Examples 29:25 
    Alcohol FG Has Priority Over Alkene/yne 33:41 
   Ether Nomenclature 36:32 
    Ether Nomenclature and Examples 36:33 
   Amine Nomenclature 42:59 
    Amine Nomenclature and Examples 43:00 
   Amine Nomenclature 49:45 
    Primary, Secondary, Tertiary, Quaternary Salt 49:46 
   Aldehyde Nomenclature 51:37 
    Aldehyde Nomenclature and Examples 51:38 
   Ketone Nomenclature 58:43 
    Ketone Nomenclature and Examples 58:44 
   Aromatic Nomenclature 65:02 
    Aromatic Nomenclature and Examples 65:03 
   Aromatic Nomenclature, cont. 69:09 
    Ortho, Meta, and Para 69:10 
   Aromatic Nomenclature, cont. 73:27 
    Common Names for Simple Substituted Aromatic Compounds 73:28 
   Carboxylic Acid Nomenclature 76:35 
    Carboxylic Acid Nomenclature and Examples 76:36 
   Carboxylic Acid Derivatives 82:28 
    Carboxylic Acid Derivatives 82:42 
    General Structure 83:10 
   Acid Halide Nomenclature 84:48 
    Acid Halide Nomenclature and Examples 84:49 
   Anhydride Nomenclature 88:10 
    Anhydride Nomenclature and Examples 88:11 
   Ester Nomenclature 92:50 
    Ester Nomenclature 92:51 
    Carboxylate Salts 98:51 
   Amide Nomenclature 100:02 
    Amide Nomenclature and Examples 100:03 
   Nitrile Nomenclature 105:22 
    Nitrile Nomenclature and Examples 105:23 
  Chemical Reactions 51:01
   Intro 0:00 
   Chemical Reactions 0:06 
    Reactants and Products 0:07 
    Thermodynamics 0:50 
    Equilibrium Constant 1:06 
    Equation 2:35 
    Organic Reaction 3:05 
   Energy vs. Progress of Rxn Diagrams 3:48 
    Exothermic Reaction 4:02 
    Endothermic Reaction 6:54 
   Estimating ΔH rxn 9:15 
    Bond Breaking 10:03 
    Bond Formation 10:25 
    Bond Strength 11:35 
    Homolytic Cleavage 11:59 
    Bond Dissociation Energy (BDE) Table 12:29 
    BDE for Multiple Bonds 14:32 
    Examples 17:35 
   Kinetics 20:35 
    Kinetics 20:36 
    Examples 21:49 
   Reaction Rate Variables 23:15 
    Reaction Rate Variables 23:16 
    Increasing Temperature, Increasing Rate 24:08 
    Increasing Concentration, Increasing Rate 25:39 
    Decreasing Energy of Activation, Increasing Rate 27:49 
   Two-Step Mechanisms 30:06 
    E vs. POR Diagram (2-step Mechanism) 30:07 
   Reactive Intermediates 33:03 
    Reactive Intermediates 33:04 
    Example: A Carbocation 35:20 
   Carbocation Stability 37:24 
    Relative Stability of Carbocation 37:25 
    Alkyl groups and Hyperconjugation 38:45 
   Carbocation Stability 41:57 
    Carbocation Stabilized by Resonance: Allylic 41:58 
    Carbocation Stabilized by Resonance: Benzylic 42:59 
    Overall Carbocation Stability 44:05 
   Free Radicals 45:05 
    Definition and Examples of Free Radicals 45:06 
   Radical Mechanisms 49:40 
    Example: Regular Arrow 49:41 
    Example: Fish-Hook Arrow 50:17 
  Free Radical Halogenation 26:23
   Intro 0:00 
   Free Radical Halogenation 0:06 
    Free Radical Halogenation 0:07 
    Mechanism: Initiation 1:27 
    Mechanism: Propagation Steps 2:21 
   Free Radical Halogenation 5:33 
    Termination Steps 5:36 
    Example 1: Terminations Steps 6:00 
    Example 2: Terminations Steps 6:18 
    Example 3: Terminations Steps 7:43 
    Example 4: Terminations Steps 8:04 
   Regiochemistry of Free Radical Halogenation 9:32 
    Which Site/Region Reacts and Why? 9:34 
    Bromination and Rate of Reaction 14:03 
   Regiochemistry of Free Radical Halogenation 14:30 
    Chlorination 14:31 
    Why the Difference in Selectivity? 19:58 
   Allylic Halogenation 20:53 
    Examples of Allylic Halogenation 20:55 
  Substitution Reactions 1:48:05
   Intro 0:00 
   Substitution Reactions 0:06 
    Substitution Reactions Example 0:07 
    Nucleophile 0:39 
    Electrophile 1:20 
    Leaving Group 2:56 
    General Reaction 4:13 
   Substitution Reactions 4:43 
    General Reaction 4:46 
    Substitution Reaction Mechanisms: Simultaneous 5:08 
    Substitution Reaction Mechanisms: Stepwise 5:34 
   SN2 Substitution 6:21 
    Example of SN2 Mechanism 6:22 
    SN2 Kinetics 7:58 
   Rate of SN2 9:10 
    Sterics Affect Rate of SN2 9:12 
    Rate of SN2 (By Type of RX) 14:13 
   SN2: E vs. POR Diagram 17:26 
    E vs. POR Diagram 17:27 
    Transition State (TS) 18:24 
   SN2 Transition State, Kinetics 20:58 
    SN2 Transition State, Kinetics 20:59 
    Hybridization of TS Carbon 21:57 
    Example: Allylic LG 23:34 
   Stereochemistry of SN2 25:46 
    Backside Attack and Inversion of Stereochemistry 25:48 
   SN2 Summary 29:56 
    Summary of SN2 29:58 
   Predict Products (SN2) 31:42 
    Example 1: Predict Products 31:50 
    Example 2: Predict Products 33:38 
    Example 3: Predict Products 35:11 
    Example 4: Predict Products 36:11 
    Example 5: Predict Products 37:32 
   SN1 Substitution Mechanism 41:52 
    Is This Substitution? Could This Be an SN2 Mechanism? 41:54 
   SN1 Mechanism 43:50 
    Two Key Steps: 1. Loss of LG 43:53 
    Two Key Steps: 2. Addition of nu 45:11 
   SN1 Kinetics 47:17 
    Kinetics of SN1 47:18 
    Rate of SN1 (By RX type) 48:44 
   SN1 E vs. POR Diagram 49:49 
    E vs. POR Diagram 49:51 
    First Transition Stage (TS-1) 51:48 
    Second Transition Stage (TS-2) 52:56 
   Stereochemistry of SN1 53:44 
    Racemization of SN1 and Achiral Carbocation Intermediate 53:46 
    Example 54:29 
   SN1 Summary 58:25 
    Summary of SN1 58:26 
   SN1 or SN2 Mechanisms? 60:40 
    Example 1: SN1 or SN2 Mechanisms 60:42 
    Example 2: SN1 or SN2 Mechanisms 63:00 
    Example 3: SN1 or SN2 Mechanisms 64:06 
    Example 4: SN1 or SN2 Mechanisms 66:17 
   SN1 Mechanism 69:12 
    Three Steps of SN1 Mechanism 69:13 
   SN1 Carbocation Rearrangements 74:50 
    Carbocation Rearrangements Example 74:51 
   SN1 Carbocation Rearrangements 80:46 
    Alkyl Groups Can Also Shift 80:48 
   Leaving Groups 84:26 
    Leaving Groups 84:27 
    Forward or Reverse Reaction Favored? 86:00 
   Leaving Groups 89:59 
    Making poor LG Better: Method 1 90:00 
   Leaving Groups 94:18 
    Making poor LG Better: Tosylate (Method 2) 94:19 
   Synthesis Problem 98:15 
    Example: Provide the Necessary Reagents 98:16 
   Nucleophilicity 101:10 
    What Makes a Good Nucleophile? 101:11 
   Nucleophilicity 104:45 
    Periodic Trends: Across Row 104:47 
    Periodic Trends: Down a Family 106:46 
  Elimination Reactions 1:11:43
   Intro 0:00 
   Elimination Reactions: E2 Mechanism 0:06 
    E2 Mechanism 0:08 
    Example of E2 Mechanism 1:01 
   Stereochemistry of E2 4:48 
    Anti-Coplanar & Anti-Elimination 4:50 
    Example 1: Stereochemistry of E2 5:34 
    Example 2: Stereochemistry of E2 10:39 
   Regiochemistry of E2 13:04 
    Refiochemistry of E2 and Zaitsev's Rule 13:05 
    Alkene Stability 17:39 
   Alkene Stability 19:20 
    Alkene Stability Examples 19:22 
    Example 1: Draw Both E2 Products and Select Major 21:57 
    Example 2: Draw Both E2 Products and Select Major 25:02 
   SN2 Vs. E2 Mechanisms 29:06 
    SN2 Vs. E2 Mechanisms 29:07 
    When Do They Compete? 30:34 
   SN2 Vs. E2 Mechanisms 31:23 
    Compare Rates 31:24 
   SN2 Vs. E2 Mechanisms 36:34 
    t-BuBr: What If Vary Base? 36:35 
    Preference for E2 Over SN2 (By RX Type) 40:42 
   E1 Elimination Mechanism 41:51 
    E1 - Elimination Unimolecular 41:52 
    E1 Mechanism: Step 1 44:14 
    E1 Mechanism: Step 2 44:48 
   E1 Kinetics 46:58 
    Rate = k[RCI] 47:00 
    E1 Rate (By Type of Carbon Bearing LG) 48:31 
   E1 Stereochemistry 49:49 
    Example 1: E1 Stereochemistry 49:51 
    Example 2: E1 Stereochemistry 52:31 
   Carbocation Rearrangements 55:57 
    Carbocation Rearrangements 56:01 
    Product Mixtures 57:20 
   Predict the Product: SN2 vs. E2 59:58 
    Example 1: Predict the Product 60:00 
    Example 2: Predict the Product 62:10 
    Example 3: Predict the Product 64:07 
   Predict the Product: SN2 vs. E2 66:06 
    Example 4: Predict the Product 66:07 
    Example 5: Predict the Product 67:29 
    Example 6: Predict the Product 67:51 
    Example 7: Predict the Product 69:18 

Section 3: Alkanes, Alkenes, & Alkynes

  Alkenes 36:39
   Intro 0:00 
   Alkenes 0:12 
    Definition and Structure of Alkenes 0:13 
    3D Sketch of Alkenes 1:53 
    Pi Bonds 3:48 
   Alkene Stability 4:57 
    Alkyl Groups Attached 4:58 
    Trans & Cis 6:20 
   Alkene Stability 8:42 
    Pi Bonds & Conjugation 8:43 
    Bridgehead Carbons & Bredt's Rule 10:22 
    Measuring Stability: Hydrogenation Reaction 11:40 
   Alkene Synthesis 12:01 
    Method 1: E2 on Alkyl Halides 12:02 
    Review: Stereochemistry 16:17 
    Review: Regiochemistry 16:50 
    Review: SN2 vs. E2 17:34 
   Alkene Synthesis 18:57 
    Method 2: Dehydration of Alcohols 18:58 
    Mechanism 20:08 
   Alkene Synthesis 23:26 
    Alcohol Dehydration 23:27 
   Example 1: Comparing Strong Acids 26:59 
   Example 2: Mechanism for Dehydration Reaction 29:00 
   Example 3: Transform 32:50 
  Reactions of Alkenes 2:08:44
   Intro 0:00 
   Reactions of Alkenes 0:05 
    Electrophilic Addition Reaction 0:06 
   Addition of HX 2:02 
    Example: Regioselectivity & 2 Steps Mechanism 2:03 
   Markovnikov Addition 5:30 
    Markovnikov Addition is Favored 5:31 
    Graph: E vs. POR 6:33 
   Example 8:29 
    Example: Predict and Consider the Stereochemistry 8:30 
   Hydration of Alkenes 12:31 
    Acid-catalyzed Addition of Water 12:32 
    Strong Acid 14:20 
   Hydration of Alkenes 15:20 
    Acid-catalyzed Addition of Water: Mechanism 15:21 
   Hydration vs. Dehydration 19:51 
    Hydration Mechanism is Exact Reverse of Dehydration 19:52 
   Example 21:28 
    Example: Hydration Reaction 21:29 
   Alternative 'Hydration' Methods 25:26 
    Oxymercuration-Demercuration 25:27 
   Oxymercuration Mechanism 28:55 
    Mechanism of Oxymercuration 28:56 
   Alternative 'Hydration' Methods 30:51 
    Hydroboration-Oxidation 30:52 
   Hydroboration Mechanism 33:22 
    1-step (concerted) 33:23 
    Regioselective 34:45 
    Stereoselective 35:30 
   Example 35:58 
    Example: Hydroboration-Oxidation 35:59 
   Example 40:42 
    Example: Predict the Major Product 40:43 
   Synthetic Utility of 'Alternate' Hydration Methods 44:36 
    Example: Synthetic Utility of 'Alternate' Hydration Methods 44:37 
   Flashcards 47:28 
    Tips On Using Flashcards 47:29 
   Bromination of Alkenes 49:51 
    Anti-Addition of Br₂ 49:52 
   Bromination Mechanism 53:16 
    Mechanism of Bromination 53:17 
   Bromination Mechanism 55:42 
    Mechanism of Bromination 55:43 
   Bromination: Halohydrin Formation 58:54 
    Addition of other Nu: to Bromonium Ion 58:55 
    Mechanism 60:08 
   Halohydrin: Regiochemistry 63:55 
    Halohydrin: Regiochemistry 63:56 
    Bromonium Ion Intermediate 64:26 
   Example 69:28 
    Example: Predict Major Product 69:29 
   Example Cont. 70:59 
    Example: Predict Major Product Cont. 71:00 
   Catalytic Hydrogenation of Alkenes 73:19 
    Features of Catalytic Hydrogenation 73:20 
   Catalytic Hydrogenation of Alkenes 74:48 
    Metal Surface 74:49 
    Heterogeneous Catalysts 75:29 
    Homogeneous Catalysts 76:08 
   Catalytic Hydrogenation of Alkenes 77:44 
    Hydrogenation & Pi Bond Stability 77:45 
    Energy Diagram 79:22 
   Catalytic Hydrogenation of Dienes 80:40 
    Hydrogenation & Pi Bond Stability 80:41 
    Energy Diagram 83:31 
   Example 84:14 
    Example: Predict Product 84:15 
   Oxidation of Alkenes 87:21 
    Redox Review 87:22 
    Epoxide 90:26 
    Diol (Glycol) 90:54 
    Ketone/ Aldehyde 91:13 
   Epoxidation 92:08 
    Epoxidation 92:09 
    General Mechanism 96:32 
   Alternate Epoxide Synthesis 97:38 
    Alternate Epoxide Synthesis 97:39 
   Dihydroxylation 101:10 
    Dihydroxylation 101:12 
    General Mechanism (Concerted Via Cycle Intermediate) 102:38 
   Ozonolysis 104:22 
    Ozonolysis: Introduction 104:23 
    Ozonolysis: Is It Good or Bad? 105:05 
    Ozonolysis Reaction 108:54 
   Examples 111:10 
    Example 1: Ozonolysis 111:11 
    Example 113:25 
   Radical Addition to Alkenes 115:05 
    Recall: Free-Radical Halogenation 115:15 
    Radical Mechanism 115:45 
    Propagation Steps 118:01 
    Atom Abstraction 118:30 
    Addition to Alkene 119:11 
   Radical Addition to Alkenes 119:54 
    Markovnivok (Electrophilic Addition) & anti-Mark. (Radical Addition) 119:55 
    Mechanism 121:03 
   Alkene Polymerization 125:35 
    Example: Alkene Polymerization 125:36 
  Alkynes 1:13:19
   Intro 0:00 
   Structure of Alkynes 0:04 
    Structure of Alkynes 0:05 
    3D Sketch 2:30 
    Internal and Terminal 4:03 
   Reductions of Alkynes 4:36 
    Catalytic Hydrogenation 4:37 
    Lindlar Catalyst 5:25 
   Reductions of Alkynes 7:24 
    Dissolving Metal Reduction 7:25 
   Oxidation of Alkynes 9:24 
    Ozonolysis 9:25 
   Reactions of Alkynes 10:56 
    Addition Reactions: Bromination 10:57 
   Addition of HX 12:24 
    Addition of HX 12:25 
   Addition of HX 13:36 
    Addition of HX: Mechanism 13:37 
   Example 17:38 
    Example: Transform 17:39 
   Hydration of Alkynes 23:35 
    Hydration of Alkynes 23:36 
   Hydration of Alkynes 26:47 
    Hydration of Alkynes: Mechanism 26:49 
   'Hydration' via Hydroboration-Oxidation 32:57 
    'Hydration' via Hydroboration-Oxidation 32:58 
    Disiamylborane 33:28 
    Hydroboration-Oxidation Cont. 34:25 
   Alkyne Synthesis 36:17 
    Method 1: Alkyne Synthesis By Dehydrohalogenation 36:19 
   Alkyne Synthesis 39:06 
    Example: Transform 39:07 
   Alkyne Synthesis 41:21 
    Method 2 & Acidity of Alkynes 41:22 
    Conjugate Bases 43:06 
   Preparation of Acetylide Anions 49:55 
    Preparation of Acetylide Anions 49:57 
   Alkyne Synthesis 53:40 
    Synthesis Using Acetylide Anions 53:41 
   Example 1: Transform 57:04 
   Example 2: Transform 61:07 
   Example 3: Transform 66:22 

Section 4: Alcohols

  Alcohols, Part I 59:52
   Intro 0:00 
   Alcohols 0:11 
    Attributes of Alcohols 0:12 
    Boiling Points 2:00 
   Water Solubility 5:00 
    Water Solubility (Like Dissolves Like) 5:01 
   Acidity of Alcohols 9:39 
    Comparison of Alcohols Acidity 9:41 
   Preparation of Alkoxides 13:03 
    Using Strong Base Like Sodium Hydride 13:04 
    Using Redox Reaction 15:36 
   Preparation of Alkoxides 17:41 
    Using K° 17:42 
    Phenols Are More Acidic Than Other Alcohols 19:51 
   Synthesis of Alcohols, ROH 21:43 
    Synthesis of Alcohols from Alkyl Halides, RX (SN2 or SN1) 21:44 
   Synthesis of Alcohols, ROH 25:08 
    Unlikely on 2° RX (E2 Favored) 25:09 
    Impossible on 3° RX (E2) and Phenyl/Vinyl RX (N/R) 25:47 
   Synthesis of Alcohols, ROH 26:26 
    SN1 with H₂O 'Solvolysis' or 'Hydrolysis' 26:27 
    Carbocation Can Rearrange 29:00 
   Synthesis of Alcohols, ROH 30:08 
    Synthesis of Alcohols From Alkenes: Hydration 30:09 
    Synthesis of Alcohols From Alkenes: Oxidation/Diol 32:20 
   Synthesis of Alcohols, ROH 33:14 
    Synthesis of Alcohols From Ketones and Aldehydes 33:15 
   Organometallic Reagents: Preparation 37:03 
    Grignard (RMgX) 37:04 
    Organolithium (Rli) 40:03 
   Organometallic Reagents: Reactions 41:45 
    Reactions of Organometallic Reagents 41:46 
   Organometallic Reagents: Reactions as Strong Nu: 46:40 
    Example 1: Reactions as Strong Nu: 46:41 
    Example 2: Reactions as Strong Nu: 48:57 
   Hydride Nu: 50:52 
    Hydride Nu: 50:53 
   Examples 53:34 
    Predict 1 53:35 
    Predict 2 54:45 
   Examples 56:43 
    Transform 56:44 
    Provide Starting Material 58:18 
  Alcohols, Part II 45:35
   Intro 0:00 
   Oxidation Reactions 0:08 
    Oxidizing Agents: Jones, PCC, Swern 0:09 
    'Jones' Oxidation 0:43 
    Example 1: Predict Oxidation Reactions 2:29 
    Example 2: Predict Oxidation Reactions 3:00 
   Oxidation Reactions 4:11 
    Selective Oxidizing Agents (PCC and Swern) 4:12 
    PCC (Pyridiniym Chlorochromate) 5:10 
    Swern Oxidation 6:05 
   General [ox] Mechanism 8:32 
    General [ox] Mechanism 8:33 
   Oxidation of Alcohols 10:11 
    Example 1: Oxidation of Alcohols 10:12 
    Example 2: Oxidation of Alcohols 11:20 
    Example 3: Oxidation of Alcohols 11:46 
   Example 13:09 
    Predict: PCC Oxidation Reactions 13:10 
   Tosylation of Alcohols 15:22 
    Introduction to Tosylation of Alcohols 15:23 
   Example 21:08 
    Example: Tosylation of Alcohols 21:09 
   Reductions of Alcohols 23:39 
    Reductions of Alcohols via SN2 with Hydride 24:22 
    Reductions of Alcohols via Dehydration 27:12 
   Conversion of Alcohols to Alkyl Halides 30:12 
    Conversion of Alcohols to Alkyl Halides via Tosylate 30:13 
   Conversion of Alcohols to Alkyl Halides 31:17 
    Using HX 31:18 
    Mechanism 32:09 
   Conversion of Alcohols to Alkyl Halides 35:43 
    Reagents that Provide LG and Nu: in One 'Pot' 35:44 
   General Mechanisms 37:44 
    Example 1: General Mechanisms 37:45 
    Example 2: General Mechanisms 39:25 
   Example 41:04 
    Transformation of Alcohols 41:05 

Section 5: Ethers, Thiols, Thioethers, & Ketones

  Ethers 1:34:45
   Intro 0:00 
   Ethers 0:11 
    Overview of Ethers 0:12 
    Boiling Points 1:37 
   Ethers 4:34 
    Water Solubility (Grams per 100mL H₂O) 4:35 
   Synthesis of Ethers 7:53 
    Williamson Ether Synthesis 7:54 
    Example: Synthesis of Ethers 9:23 
   Synthesis of Ethers 10:27 
    Example: Synthesis of Ethers 10:28 
    Intramolecular SN2 13:04 
   Planning an Ether Synthesis 14:45 
    Example 1: Planning an Ether Synthesis 14:46 
   Planning an Ether Synthesis 16:16 
    Example 2: Planning an Ether Synthesis 16:17 
   Planning an Ether Synthesis 22:04 
    Example 3: Synthesize Dipropyl Ether 22:05 
   Planning an Ether Synthesis 26:01 
    Example 4: Transform 26:02 
   Synthesis of Epoxides 30:05 
    Synthesis of Epoxides Via Williamson Ether Synthesis 30:06 
    Synthesis of Epoxides Via Oxidation 32:42 
   Reaction of Ethers 33:35 
    Reaction of Ethers 33:36 
   Reactions of Ethers with HBr or HI 34:44 
    Reactions of Ethers with HBr or HI 34:45 
     Mechanism 35:25 
   Epoxide Ring-Opening Reaction 39:25 
    Epoxide Ring-Opening Reaction 39:26 
    Example: Epoxide Ring-Opening Reaction 42:42 
   Acid-Catalyzed Epoxide Ring Opening 44:16 
    Acid-Catalyzed Epoxide Ring Opening Mechanism 44:17 
   Acid-Catalyzed Epoxide Ring Opening 50:13 
    Acid-Catalyzed Epoxide Ring Opening Mechanism 50:14 
   Catalyst Needed for Ring Opening 53:34 
    Catalyst Needed for Ring Opening 53:35 
   Stereochemistry of Epoxide Ring Opening 55:56 
    Stereochemistry: SN2 Mechanism 55:57 
    Acid or Base Mechanism? 58:30 
   Example 61:03 
    Transformation 61:04 
   Regiochemistry of Epoxide Ring Openings 65:29 
    Regiochemistry of Epoxide Ring Openings in Base 65:30 
    Regiochemistry of Epoxide Ring Openings in Acid 67:34 
   Example 70:26 
    Example 1: Epoxide Ring Openings in Base 70:27 
    Example 2: Epoxide Ring Openings in Acid 72:50 
   Reactions of Epoxides with Grignard and Hydride 75:35 
    Reactions of Epoxides with Grignard and Hydride 75:36 
   Example 81:47 
    Example: Ethers 81:50 
   Example 87:01 
    Example: Synthesize 87:02 
  Thiols and Thioethers 16:50
   Intro 0:00 
   Thiols and Thioethers 0:10 
    Physical Properties 0:11 
    Reactions Can Be Oxidized 2:16 
   Acidity of Thiols 3:11 
    Thiols Are More Acidic Than Alcohols 3:12 
   Synthesis of Thioethers 6:44 
    Synthesis of Thioethers 6:45 
   Example 8:43 
    Example: Synthesize the Following Target Molecule 8:44 
   Example 14:18 
    Example: Predict 14:19 
  Ketones 2:18:12
   Intro 0:00 
   Aldehydes & Ketones 0:11 
    The Carbonyl: Resonance & Inductive 0:12 
    Reactivity 0:50 
   The Carbonyl 2:35 
    The Carbonyl 2:36 
    Carbonyl FG's 4:10 
   Preparation/Synthesis of Aldehydes & Ketones 6:18 
    Oxidation of Alcohols 6:19 
    Ozonolysis of Alkenes 7:16 
    Hydration of Alkynes 8:01 
   Reaction with Hydride Nu: 9:00 
    Reaction with Hydride Nu: 9:01 
   Reaction with Carbon Nu: 11:29 
    Carbanions: Acetylide 11:30 
    Carbanions: Cyanide 14:23 
   Reaction with Carbon Nu: 15:32 
    Organometallic Reagents (RMgX, Rli) 15:33 
   Retrosynthesis of Alcohols 17:04 
    Retrosynthesis of Alcohols 17:05 
   Example 19:30 
    Example: Transform 19:31 
   Example 22:57 
    Example: Transform 22:58 
   Example 28:19 
    Example: Transform 28:20 
   Example 33:36 
    Example: Transform 33:37 
   Wittig Reaction 37:39 
    Wittig Reaction: A Resonance-Stabilized Carbanion (Nu:) 37:40 
    Wittig Reaction: Mechanism 39:51 
   Preparation of Wittig Reagent 41:58 
    Two Steps From RX 41:59 
    Example: Predict 45:02 
   Wittig Retrosynthesis 46:19 
    Wittig Retrosynthesis 46:20 
    Synthesis 48:09 
   Reaction with Oxygen Nu: 51:21 
    Addition of H₂O 51:22 
    Exception: Formaldehyde is 99% Hydrate in H₂O Solution 54:10 
    Exception: Hydrate is Favored if Partial Positive Near Carbonyl 55:26 
   Reaction with Oxygen Nu: 57:45 
    Addition of ROH 57:46 
    TsOH: Tosic Acid 58:28 
    Addition of ROH Cont. 59:09 
   Example 61:43 
    Predict 61:44 
    Mechanism 63:08 
   Mechanism for Acetal Formation 64:10 
    Mechanism for Acetal Formation 64:11 
   What is a CTI? 75:04 
    Tetrahedral Intermediate 75:05 
    Charged Tetrahedral Intermediate 75:45 
    CTI: Acid-cat 76:10 
    CTI: Base-cat 77:01 
   Acetals & Cyclic Acetals 77:49 
    Overall 77:50 
    Cyclic Acetals 78:46 
   Hydrolysis of Acetals: Regenerates Carbonyl 80:01 
    Hydrolysis of Acetals: Regenerates Carbonyl 80:02 
    Mechanism 82:08 
   Reaction with Nitrogen Nu: 90:11 
    Reaction with Nitrogen Nu: 90:12 
    Example 92:18 
   Mechanism of Imine Formation 93:24 
    Mechanism of Imine Formation 93:25 
   Oxidation of Aldehydes 98:12 
    Oxidation of Aldehydes 1 98:13 
    Oxidation of Aldehydes 2 99:52 
    Oxidation of Aldehydes 3 100:10 
   Reductions of Ketones and Aldehydes 100:54 
    Reductions of Ketones and Aldehydes 100:55 
    Hydride/ Workup 101:22 
    Raney Nickel 102:07 
   Reductions of Ketones and Aldehydes 103:24 
    Clemmensen Reduction & Wolff-Kishner Reduction 103:40 
   Acetals as Protective Groups 106:50 
    Acetals as Protective Groups 106:51 
   Example 110:39 
    Example: Consider the Following Synthesis 110:40 
   Protective Groups 114:47 
    Protective Groups 114:48 
   Example 119:02 
    Example: Transform 119:03 
   Example: Another Route 124:54 
    Example: Transform 128:49 
   Example 128:50 
    Transform 128:51 
   Example 131:05 
    Transform 131:06 
   Example 133:45 
    Transform 133:46 
   Example 135:43 
    Provide the Missing Starting Material 135:44 

Section 6: Organic Transformation Practice

  Transformation Practice Problems 38:58
   Intro 0:00 
   Practice Problems 0:33 
    Practice Problem 1: Transform 0:34 
    Practice Problem 2: Transform 3:57 
   Practice Problems 7:49 
    Practice Problem 3: Transform 7:50 
   Practice Problems 15:32 
    Practice Problem 4: Transform 15:34 
    Practice Problem 5: Transform 20:15 
   Practice Problems 24:08 
    Practice Problem 6: Transform 24:09 
    Practice Problem 7: Transform 29:27 
   Practice Problems 33:08 
    Practice Problem 8: Transform 33:09 
    Practice Problem 9: Transform 35:23 

Section 7: Carboxylic Acids

  Carboxylic Acids 1:17:51
   Intro 0:00 
   Review Reactions of Ketone/Aldehyde 0:06 
    Carbonyl Reactivity 0:07 
    Nu: = Hydride (Reduction) 1:37 
    Nu: = Grignard 2:08 
   Review Reactions of Ketone/Aldehyde 2:53 
    Nu: = Alcohol 2:54 
    Nu: = Amine 3:46 
   Carboxylic Acids and Their Derivatives 4:37 
    Carboxylic Acids and Their Derivatives 4:38 
   Ketone vs. Ester Reactivity 6:33 
    Ketone Reactivity 6:34 
    Ester Reactivity 6:55 
   Carboxylic Acids and Their Derivatives 7:30 
    Acid Halide, Anhydride, Ester, Amide, and Nitrile 7:43 
   General Reactions of Acarboxylic Acid Derivatives 9:22 
    General Reactions of Acarboxylic Acid Derivatives 9:23 
   Physical Properties of Carboxylic Acids 12:16 
    Acetic Acid 12:17 
    Carboxylic Acids 15:46 
   Aciditiy of Carboxylic Acids, RCO₂H 17:45 
    Alcohol 17:46 
    Carboxylic Acid 19:21 
   Aciditiy of Carboxylic Acids, RCO₂H 21:31 
    Aciditiy of Carboxylic Acids, RCO₂H 21:32 
   Aciditiy of Carboxylic Acids, RCO₂H 24:48 
    Example: Which is the Stronger Acid? 24:49 
   Aciditiy of Carboxylic Acids, RCO₂H 30:06 
    Inductive Effects Decrease with Distance 30:07 
   Preparation of Carboxylic Acids, RCO₂H 31:55 
    A) By Oxidation 31:56 
   Preparation of Carboxylic Acids, RCO₂H 34:37 
    Oxidation of Alkenes/Alkynes - Ozonolysis 34:38 
   Preparation of Carboxylic Acids, RCO₂H 36:17 
    B) Preparation of RCO₂H from Organometallic Reagents 36:18 
   Preparation of Carboxylic Acids, RCO₂H 38:02 
    Example: Preparation of Carboxylic Acids 38:03 
   Preparation of Carboxylic Acids, RCO₂H 40:38 
    C) Preparation of RCO₂H by Hydrolysis of Carboxylic Acid Derivatives 40:39 
   Hydrolysis Mechanism 42:19 
    Hydrolysis Mechanism 42:20 
    Mechanism: Acyl Substitution (Addition/Elimination) 43:05 
   Hydrolysis Mechanism 47:27 
    Substitution Reaction 47:28 
    RO is Bad LG for SN1/SN2 47:39 
    RO is okay LG for Collapse of CTI 48:31 
   Hydrolysis Mechanism 50:07 
    Base-promoted Ester Hydrolysis (Saponification) 50:08 
   Applications of Carboxylic Acid Derivatives: 53:10 
    Saponification Reaction 53:11 
   Ester Hydrolysis 57:15 
    Acid-Catalyzed Mechanism 57:16 
   Ester Hydrolysis Requires Acide or Base 63:06 
    Ester Hydrolysis Requires Acide or Base 63:07 
   Nitrile Hydrolysis 65:22 
    Nitrile Hydrolysis 65:23 
   Nitrile Hydrolysis Mechanism 66:53 
    Nitrile Hydrolysis Mechanism 66:54 
   Use of Nitriles in Synthesis 72:39 
    Example: Nitirles in Synthesis 72:40 
  Carboxylic Acid Derivatives 1:21:04
   Intro 0:00 
   Carboxylic Acid Derivatives 0:05 
    Carboxylic Acid Derivatives 0:06 
    General Structure 1:00 
   Preparation of Carboxylic Acid Derivatives 1:19 
    Which Carbonyl is the Better E+? 1:20 
    Inductive Effects 1:54 
    Resonance 3:23 
   Preparation of Carboxylic Acid Derivatives 6:52 
    Which is Better E+, Ester or Acid Chloride? 6:53 
    Inductive Effects 7:02 
    Resonance 7:20 
   Preparation of Carboxylic Acid Derivatives 10:45 
    Which is Better E+, Carboxylic Acid or Anhydride? 10:46 
    Inductive Effects & Resonance 11:00 
   Overall: Order of Electrophilicity and Leaving Group 14:49 
    Order of Electrophilicity and Leaving Group 14:50 
    Example: Acid Chloride 16:26 
    Example: Carboxylate 19:17 
   Carboxylic Acid Derivative Interconversion 20:53 
    Carboxylic Acid Derivative Interconversion 20:54 
   Preparation of Acid Halides 24:31 
    Preparation of Acid Halides 24:32 
   Preparation of Anhydrides 25:45 
    A) Dehydration of Acids (For Symmetrical Anhydride) 25:46 
   Preparation of Anhydrides 27:29 
    Example: Dehydration of Acids 27:30 
   Preparation of Anhydrides 29:16 
    B) From an Acid Chloride (To Make Mixed Anhydride) 29:17 
    Mechanism 30:03 
   Preparation of Esters 31:53 
    A) From Acid Chloride or Anhydride 31:54 
   Preparation of Esters 33:48 
    B) From Carboxylic Acids (Fischer Esterification) 33:49 
    Mechanism 36:55 
   Preparations of Esters 41:38 
    Example: Predict the Product 41:39 
   Preparation of Esters 43:17 
    C) Transesterification 43:18 
    Mechanism 45:17 
   Preparation of Esters 47:58 
    D) SN2 with Carboxylate 47:59 
    Mechanism: Diazomethane 49:28 
   Preparation of Esters 51:01 
    Example: Transform 51:02 
   Preparation of Amides 52:27 
    A) From an Acid Cl or Anhydride 52:28 
   Preparations of Amides 54:47 
    B) Partial Hydrolysis of Nitriles 54:48 
   Preparation of Amides 56:11 
    Preparation of Amides: Find Alternate Path 56:12 
   Preparation of Amides 59:04 
    C) Can't be Easily Prepared from RCO₂H Directly 59:05 
   Reactions of Carboxylic Acid Derivatives with Nucleophiles 61:41 
    A) Hydride Nu: Review 61:42 
    A) Hydride Nu: Sodium Borohydride + Ester 62:43 
   Reactions of Carboxylic Acid Derivatives with Nucleophiles 63:57 
    Lithium Aluminum Hydride (LAH) 63:58 
    Mechanism 64:29 
   Summary of Hydride Reductions 67:09 
    Summary of Hydride Reductions 1 67:10 
    Summary of Hydride Reductions 2 67:36 
   Hydride Reduction of Amides 68:12 
    Hydride Reduction of Amides Mechanism 68:13 
   Reaction of Carboxylic Acid Derivatives with Organometallics 72:04 
    Review 1 72:05 
    Review 2 72:50 
   Reaction of Carboxylic Acid Derivatives with Organometallics 74:22 
    Example: Lactone 74:23 
   Special Hydride Nu: Reagents 76:34 
    Diisobutylaluminum Hydride 76:35 
    Example 77:25 
    Other Special Hydride 78:41 
   Addition of Organocuprates to Acid Chlorides 79:07 
    Addition of Organocuprates to Acid Chlorides 79:08 

Section 8: Enols & Enolates

  Enols and Enolates, Part 1 1:26:22
   Intro 0:00 
   Enols and Enolates 0:09 
    The Carbonyl 0:10 
    Keto-Enol Tautomerization 1:17 
   Keto-Enol Tautomerization Mechanism 2:28 
    Tautomerization Mechanism (2 Steps) 2:29 
   Keto-Enol Tautomerization Mechanism 5:15 
    Reverse Reaction 5:16 
    Mechanism 6:07 
   Formation of Enolates 7:27 
    Why is a Ketone's α H's Acidic? 7:28 
   Formation of Other Carbanions 10:05 
    Alkyne 10:06 
    Alkane and Alkene 10:53 
   Formation of an Enolate: Choice of Base 11:27 
    Example: Choice of Base 11:28 
   Formation of an Enolate: Choice of Base 13:56 
    Deprotonate, Stronger Base, and Lithium Diisopropyl Amide (LDA) 13:57 
   Formation of an Enolate: Choice of Base 15:48 
    Weaker Base & 'Active' Methylenes 15:49 
    Why Use NaOEt instead of NaOH? 19:01 
   Other Acidic 'α' Protons 20:30 
    Other Acidic 'α' Protons 20:31 
    Why is an Ester Less Acidic than a Ketone? 24:10 
   Other Acidic 'α' Protons 25:19 
    Other Acidic 'α' Protons Continue 25:20 
   How are Enolates Used 25:54 
    Enolates 25:55 
    Possible Electrophiles 26:21 
   Alkylation of Enolates 27:56 
    Alkylation of Enolates 27:57 
    Resonance Form 30:03 
   α-Halogenation 32:17 
    α-Halogenation 32:18 
    Iodoform Test for Methyl Ketones 33:47 
   α-Halogenation 35:55 
    Acid-Catalyzed 35:57 
    Mechanism: 1st Make Enol (2 Steps) 36:14 
    Whate Other Eloctrophiles ? 39:17 
   Aldol Condensation 39:38 
    Aldol Condensation 39:39 
   Aldol Mechanism 41:26 
    Aldol Mechanism: In Base, Deprotonate First 41:27 
   Aldol Mechanism 45:28 
    Mechanism for Loss of H₂O 45:29 
    Collapse of CTI and β-elimination Mechanism 47:51 
    Loss of H₂0 is not E2! 48:39 
   Aldol Summary 49:53 
    Aldol Summary 49:54 
    Base-Catalyzed Mechanism 52:34 
    Acid-Catalyzed Mechansim 53:01 
   Acid-Catalyzed Aldol Mechanism 54:01 
    First Step: Make Enol 54:02 
   Acid-Catalyzed Aldol Mechanism 56:54 
    Loss of H₂0 (β elimination) 56:55 
   Crossed/Mixed Aldol 60:55 
    Crossed/Mixed Aldol & Compound with α H's 60:56 
    Ketone vs. Aldehyde 62:30 
    Crossed/Mixed Aldol & Compound with α H's Continue 63:10 
   Crossed/Mixed Aldol 65:21 
    Mixed Aldol: control Using LDA 65:22 
   Crossed/Mixed Aldol Retrosynthesis 68:53 
    Example: Predic Aldol Starting Material (Aldol Retrosyntheiss) 68:54 
   Claisen Condensation 72:54 
    Claisen Condensation (Aldol on Esters) 72:55 
   Claisen Condensation 79:52 
    Example 1: Claisen Condensation 79:53 
   Claisen Condensation 82:48 
    Example 2: Claisen Condensation 82:49 
  Enols and Enolates, Part 2 50:57
   Intro 0:00 
   Conjugate Additions 0:06 
    α, β-unsaturated Carbonyls 0:07 
   Conjugate Additions 1:50 
    '1,2-addition' 1:51 
    '1,-4-addition' or 'Conjugate Addition' 2:24 
   Conjugate Additions 4:53 
    Why can a Nu: Add to this Alkene? 4:54 
    Typical Alkene 5:09 
    α, β-unsaturated Alkene 5:39 
   Electrophilic Alkenes: Michael Acceptors 6:35 
    Other 'Electrophilic' Alkenes (Called 'Michael Acceptors) 6:36 
   1,4-Addition of Cuprates (R2CuLi) 8:29 
    1,4-Addition of Cuprates (R2CuLi) 8:30 
   1,4-Addition of Cuprates (R2CuLi) 11:23 
    Use Cuprates in Synthesis 11:24 
   Preparation of Cuprates 12:25 
    Prepare Organocuprate From Organolithium 12:26 
    Cuprates Also Do SN2 with RX E+ (Not True for RMgX, RLi) 13:06 
   1,4-Addition of Enolates: Michael Reaction 13:50 
    1,4-Addition of Enolates: Michael Reaction 13:51 
    Mechanism 15:57 
   1,4-Addition of Enolates: Michael Reaction 18:47 
    Example: 1,4-Addition of Enolates 18:48 
   1,4-Addition of Enolates: Michael Reaction 21:02 
    Michael Reaction, Followed by Intramolecular Aldol 21:03 
   Mechanism of the Robinson Annulation 24:26 
    Mechanism of the Robinson Annulation 24:27 
   Enols and Enolates: Advanced Synthesis Topics 31:10 
    Stablized Enolates and the Decarboxylation Reaction 31:11 
    Mechanism: A Pericyclic Reaction 32:08 
   Enols and Enolates: Advanced Synthesis Topics 33:32 
    Example: Advance Synthesis 33:33 
   Enols and Enolates: Advanced Synthesis Topics 36:10 
    Common Reagents: Diethyl Malonate 36:11 
    Common Reagents: Ethyl Acetoacetate 37:27 
   Enols and Enolates: Advanced Synthesis Topics 38:06 
    Example: Transform 38:07 
   Advanced Synthesis Topics: Enamines 41:52 
    Enamines 41:53 
   Advanced Synthesis Topics: Enamines 43:06 
    Reaction with Ketone/Aldehyde 43:07 
    Example 44:08 
   Advanced Synthesis Topics: Enamines 45:31 
    Example: Use Enamines as Nu: (Like Enolate) 45:32 
   Advanced Synthesis Topics: Enamines 47:56 
    Example 47:58 

Section 9: Aromatic Compounds

  Aromatic Compounds: Structure 1:00:59
   Intro 0:00 
   Aromatic Compounds 0:05 
    Benzene 0:06 
    3D Sketch 1:33 
   Features of Benzene 4:41 
    Features of Benzene 4:42 
   Aromatic Stability 6:41 
    Resonance Stabilization of Benzene 6:42 
    Cyclohexatriene 7:24 
    Benzene (Actual, Experimental) 8:11 
   Aromatic Stability 9:03 
    Energy Graph 9:04 
   Aromaticity Requirements 9:55 
    1) Cyclic and Planar 9:56 
    2) Contiguous p Orbitals 10:49 
    3) Satisfy Huckel's Rule 11:20 
    Example: Benzene 12:32 
   Common Aromatic Compounds 13:28 
    Example: Pyridine 13:29 
   Common Aromatic Compounds 16:25 
    Example: Furan 16:26 
   Common Aromatic Compounds 19:42 
    Example: Thiophene 19:43 
    Example: Pyrrole 20:18 
   Common Aromatic Compounds 21:09 
    Cyclopentadienyl Anion 21:10 
    Cycloheptatrienyl Cation 23:48 
    Naphthalene 26:04 
   Determining Aromaticity 27:28 
    Example: Which of the Following are Aromatic? 27:29 
   Molecular Orbital (MO) Theory 32:26 
    What's So Special About '4n + 2' Electrons? 32:27 
    π bond & Overlapping p Orbitals 32:53 
   Molecular Orbital (MO) Diagrams 36:56 
    MO Diagram: Benzene 36:58 
   Drawing MO Diagrams 44:26 
    Example: 3-Membered Ring 44:27 
    Example: 4-Membered Ring 46:04 
   Drawing MO Diagrams 47:51 
    Example: 5-Membered Ring 47:52 
    Example: 8-Membered Ring 49:32 
   Aromaticity and Reactivity 51:03 
    Example: Which is More Acidic? 51:04 
   Aromaticity and Reactivity 56:03 
    Example: Which has More Basic Nitrogen, Pyrrole or Pyridine? 56:04 
  Aromatic Compounds: Reactions, Part 1 1:24:04
   Intro 0:00 
   Reactions of Benzene 0:07 
    N/R as Alkenes 0:08 
    Substitution Reactions 0:50 
   Electrophilic Aromatic Substitution 1:24 
    Electrophilic Aromatic Substitution 1:25 
    Mechanism Step 1: Addition of Electrophile 2:08 
    Mechanism Step 2: Loss of H+ 4:14 
   Electrophilic Aromatic Substitution on Substituted Benzenes 5:21 
    Electron Donating Group 5:22 
    Electron Withdrawing Group 8:02 
    Halogen 9:23 
   Effects of Electron-Donating Groups (EDG) 10:23 
    Effects of Electron-Donating Groups (EDG) 10:24 
    What Effect Does EDG (OH) Have? 11:40 
    Reactivity 13:03 
    Regioselectivity 14:07 
   Regioselectivity: EDG is o/p Director 14:57 
    Prove It! Add E+ and Look at Possible Intermediates 14:58 
    Is OH Good or Bad? 17:38 
   Effects of Electron-Withdrawing Groups (EWG) 20:20 
    What Effect Does EWG Have? 20:21 
    Reactivity 21:28 
    Regioselectivity 22:24 
   Regioselectivity: EWG is a Meta Director 23:23 
    Prove It! Add E+ and Look at Competing Intermediates 23:24 
    Carbocation: Good or Bad? 26:01 
   Effects of Halogens on EAS 28:33 
    Inductive Withdrawal of e- Density vs. Resonance Donation 28:34 
   Summary of Substituent Effects on EAS 32:33 
    Electron Donating Group 32:34 
    Electron Withdrawing Group 33:37 
   Directing Power of Substituents 34:35 
    Directing Power of Substituents 34:36 
    Example 36:41 
   Electrophiles for Electrophilic Aromatic Substitution 38:43 
    Reaction: Halogenation 38:44 
   Electrophiles for Electrophilic Aromatic Substitution 40:27 
    Reaction: Nitration 40:28 
   Electrophiles for Electrophilic Aromatic Substitution 41:45 
    Reaction: Sulfonation 41:46 
   Electrophiles for Electrophilic Aromatic Substitution 43:19 
    Reaction: Friedel-Crafts Alkylation 43:20 
   Electrophiles for Electrophilic Aromatic Substitution 45:43 
    Reaction: Friedel-Crafts Acylation 45:44 
   Electrophilic Aromatic Substitution: Nitration 46:52 
    Electrophilic Aromatic Substitution: Nitration 46:53 
    Mechanism 48:56 
   Nitration of Aniline 52:40 
    Nitration of Aniline Part 1 52:41 
    Nitration of Aniline Part 2: Why? 54:12 
   Nitration of Aniline 56:10 
    Workaround: Protect Amino Group as an Amide 56:11 
   Electrophilic Aromatic Substitution: Sulfonation 58:16 
    Electrophilic Aromatic Substitution: Sulfonation 58:17 
    Example: Transform 59:25 
   Electrophilic Aromatic Substitution: Friedel-Crafts Alkylation 62:24 
    Electrophilic Aromatic Substitution: Friedel-Crafts Alkylation 62:25 
    Example & Mechanism 63:37 
   Friedel-Crafts Alkylation Drawbacks 65:48 
    A) Can Over-React (Dialkylation) 65:49 
   Friedel-Crafts Alkylation Drawbacks 68:21 
    B) Carbocation Can Rearrange 68:22 
    Mechanism 69:33 
   Friedel-Crafts Alkylation Drawbacks 73:35 
    Want n-Propyl? Use Friedel-Crafts Acylation 73:36 
    Reducing Agents 76:45 
   Synthesis with Electrophilic Aromatic Substitution 78:45 
    Example: Transform 78:46 
   Synthesis with Electrophilic Aromatic Substitution 80:59 
    Example: Transform 81:00 
  Aromatic Compounds: Reactions, Part 2 59:10
   Intro 0:00 
   Reagents for Electrophilic Aromatic Substitution 0:07 
    Reagents for Electrophilic Aromatic Substitution 0:08 
   Preparation of Diazonium Salt 2:12 
    Preparation of Diazonium Salt 2:13 
   Reagents for Sandmeyer Reactions 4:14 
    Reagents for Sandmeyer Reactions 4:15 
   Apply Diazonium Salt in Synthesis 6:20 
    Example: Transform 6:21 
   Apply Diazonium Salt in Synthesis 9:14 
    Example: Synthesize Following Target Molecule from Benzene or Toluene 9:15 
   Apply Diazonium Salt in Synthesis 14:56 
    Example: Transform 14:57 
   Reactions of Aromatic Substituents 21:56 
    A) Reduction Reactions 21:57 
   Reactions of Aromatic Substituents 23:24 
    B) Oxidations of Arenes 23:25 
    Benzylic [ox] Even Breaks C-C Bonds! 25:05 
    Benzylic Carbon Can't Be Quaternary 25:55 
   Reactions of Aromatic Substituents 26:21 
    Example 26:22 
   Review of Benzoic Acid Synthesis 27:34 
    Via Hydrolysis 27:35 
    Via Grignard 28:20 
   Reactions of Aromatic Substituents 29:15 
    C) Benzylic Halogenation 29:16 
    Radical Stabilities 31:55 
    N-bromosuccinimide (NBS) 32:23 
   Reactions of Aromatic Substituents 33:08 
    D) Benzylic Substitutions 33:09 
   Reactions of Aromatic Side Chains 37:08 
    Example: Transform 37:09 
   Nucleophilic Aromatic Substitution 43:13 
    Nucleophilic Aromatic Substitution 43:14 
   Nucleophilic Aromatic Substitution 47:08 
    Example 47:09 
    Mechanism 48:00 
   Nucleophilic Aromatic Substitution 50:43 
    Example 50:44 
   Nucleophilic Substitution: Benzyne Mechanism 52:46 
    Nucleophilic Substitution: Benzyne Mechanism 52:47 
   Nucleophilic Substitution: Benzyne Mechanism 57:31 
    Example: Predict Product 57:32 

Section 10: Dienes & Amines

  Conjugated Dienes 1:09:12
   Intro 0:00 
   Conjugated Dienes 0:08 
    Conjugated π Bonds 0:09 
   Diene Stability 2:00 
    Diene Stability: Cumulated 2:01 
    Diene Stability: Isolated 2:37 
    Diene Stability: Conjugated 2:51 
    Heat of Hydrogenation 3:00 
   Allylic Carbocations and Radicals 5:15 
    Allylic Carbocations and Radicals 5:16 
   Electrophilic Additions to Dienes 7:00 
    Alkenes 7:01 
    Unsaturated Ketone 7:47 
   Electrophilic Additions to Dienes 8:28 
    Conjugated Dienes 8:29 
   Electrophilic Additions to Dienes 9:46 
    Mechanism (2-Steps): Alkene 9:47 
   Electrophilic Additions to Dienes 11:40 
    Mechanism (2-Steps): Diene 11:41 
    1,2 'Kinetic' Product 13:08 
    1,4 'Thermodynamic' Product 14:47 
   E vs. POR Diagram 15:50 
    E vs. POR Diagram 15:51 
   Kinetic vs. Thermodynamic Control 21:56 
    Kinetic vs. Thermodynamic Control 21:57 
   How? Reaction is Reversible! 23:51 
    1,2 (Less Stable product) 23:52 
    1,4 (More Stable Product) 25:16 
   Diels Alder Reaction 26:34 
    Diels Alder Reaction 26:35 
   Dienophiles (E+) 29:23 
    Dienophiles (E+) 29:24 
   Alkyne Diels-Alder Example 30:48 
    Example: Alkyne Diels-Alder 30:49 
   Diels-Alder Reaction: Dienes (Nu:) 32:22 
    Diels-Alder ReactionL Dienes (Nu:) 32:23 
   Diels-Alder Reaction: Dienes 33:51 
    Dienes Must Have 's-cis' Conformation 33:52 
    Example 35:25 
   Diels-Alder Reaction with Cyclic Dienes 36:08 
    Cyclic Dienes are Great for Diels-Alder Reaction 36:09 
     Cyclopentadiene 37:10 
   Diels-Alder Reaction: Bicyclic Products 40:50 
    Endo vs. Exo Terminology: Norbornane & Bicyclo Heptane 40:51 
    Example: Bicyclo Heptane 42:29 
   Diels-Alder Reaction with Cyclic Dienes 44:15 
    Example 44:16 
   Stereochemistry of the Diels-Alder Reaction 47:39 
    Stereochemistry of the Diels-Alder Reaction 47:40 
    Example 48:08 
   Stereochemistry of the Diels-Alder Reaction 50:21 
    Example 50:22 
   Regiochemistry of the Diels-Alder Reaction 52:42 
    Rule: 1,2-Product Preferred Over 1,3-Product 52:43 
   Regiochemistry of the Diels-Alder Reaction 54:18 
    Rule: 1,4-Product Preferred Over 1,3-Product 54:19 
   Regiochemistry of the Diels-Alder Reaction 55:02 
    Why 1,2-Product or 1,4-Product Favored? 55:03 
    Example 56:11 
   Diels-Alder Reaction 58:06 
    Example: Predict 58:07 
   Diels-Alder Reaction 61:27 
    Explain Why No Diels-Alder Reaction Takes Place in This Case 61:28 
   Diels-Alder Reaction 63:09 
    Example: Predict 63:10 
   Diels-Alder Reaction: Synthesis Problem 65:39 
    Diels-Alder Reaction: Synthesis Problem 65:40 
  Pericyclic Reactions and Molecular Orbital (MO) Theory 1:21:31
   Intro 0:00 
   Pericyclic Reactions 0:05 
    Pericyclic Reactions 0:06 
   Electrocyclic Reactions 1:19 
    Electrocyclic Reactions 1:20 
   Electrocyclic Reactions 3:13 
    Stereoselectivity 3:14 
   Electrocyclic Reactions 8:10 
    Example: Predict 8:11 
   Sigmatropic Rearrangements 12:29 
    Sigmatropic Rearrangements 12:30 
    Cope Rearrangement 14:44 
   Sigmatropic Rearrangements 16:44 
    Claisen Rearrangement 1 16:45 
    Claisen Rearrangement 2 17:46 
   Cycloaddition Reactions 19:22 
    Diels-Alder 19:23 
    1,3-Dipolar Cycloaddition 20:32 
   Cycloaddition Reactions: Stereochemistry 21:58 
    Cycloaddition Reactions: Stereochemistry 21:59 
   Cycloaddition Reactions: Heat or Light? 26:00 
    4+2 Cycloadditions 26:01 
    2+2 Cycloadditions 27:23 
   Molecular Orbital (MO) Theory of Chemical Reactions 29:26 
    Example 1: Molecular Orbital Theory of Bonding 29:27 
   Molecular Orbital (MO) Theory of Chemical Reactions 31:59 
    Example 2: Molecular Orbital Theory of Bonding 32:00 
   Molecular Orbital (MO) Theory of Chemical Reactions 33:33 
    MO Theory of Aromaticity, Huckel's Rule 33:34 
   Molecular Orbital (MO) Theory of Chemical Reactions 36:43 
    Review: Molecular Orbital Theory of Conjugated Systems 36:44 
   Molecular Orbital (MO) Theory of Chemical Reactions 44:56 
    Review: Molecular Orbital Theory of Conjugated Systems 44:57 
   Molecular Orbital (MO) Theory of Chemical Reactions 46:54 
    Review: Molecular Orbital Theory of Conjugated Systems 46:55 
   Molecular Orbital (MO) Theory of Chemical Reactions 48:36 
    Frontier Molecular Orbitals are Involved in Reactions 48:37 
    Examples 50:20 
   MO Theory of Pericyclic Reactions: The Woodward-Hoffmann Rules 51:51 
    Heat-promoted Pericyclic Reactions and Light-promoted Pericyclic Reactions 51:52 
   MO Theory of Pericyclic Reactions: The Woodward-Hoffmann Rules 53:42 
    Why is a [4+2] Cycloaddition Thermally Allowed While the [2+2] is Not? 53:43 
   MO Theory of Pericyclic Reactions: The Woodward-Hoffmann Rules 56:51 
    Why is a [2+2] Cycloaddition Photochemically Allowed? 56:52 
   Pericyclic Reaction Example I 59:16 
    Pericyclic Reaction Example I 59:17 
   Pericyclic Reaction Example II 67:40 
    Pericyclic Reaction Example II 67:41 
   Pericyclic Reaction Example III: Vitamin D - The Sunshine Vitamin 74:22 
    Pericyclic Reaction Example III: Vitamin D - The Sunshine Vitamin 74:23 
  Amines 34:58
   Intro 0:00 
   Amines: Properties and Reactivity 0:04 
    Compare Amines to Alcohols 0:05 
   Amines: Lower Boiling Point than ROH 0:55 
    1) RNH₂ Has Lower Boiling Point than ROH 0:56 
   Amines: Better Nu: Than ROH 2:22 
    2) RNH₂ is a Better Nucleophile than ROH Example 1 2:23 
    RNH₂ is a Better Nucleophile than ROH Example 2 3:08 
   Amines: Better Nu: than ROH 3:47 
    Example 3:48 
   Amines are Good Bases 5:41 
    3) RNH₂ is a Good Base 5:42 
   Amines are Good Bases 7:06 
    Example 1 7:07 
    Example 2: Amino Acid 8:27 
   Alkyl vs. Aryl Amines 9:56 
    Example: Which is Strongest Base? 9:57 
   Alkyl vs. Aryl Amines 14:55 
    Verify by Comparing Conjugate Acids 14:56 
   Reaction of Amines 17:42 
    Reaction with Ketone/Aldehyde: 1° Amine (RNH₂) 17:43 
   Reaction of Amines 18:48 
    Reaction with Ketone/Aldehyde: 2° Amine (R2NH) 18:49 
   Use of Enamine: Synthetic Equivalent of Enolate 20:08 
    Use of Enamine: Synthetic Equivalent of Enolate 20:09 
   Reaction of Amines 24:10 
    Hofmann Elimination 24:11 
   Hofmann Elimination 26:16 
    Kinetic Product 26:17 
   Structure Analysis Using Hofmann Elimination 28:22 
    Structure Analysis Using Hofmann Elimination 28:23 
   Biological Activity of Amines 30:30 
    Adrenaline 31:07 
    Mescaline (Peyote Alkaloid) 31:22 
    Amino Acids, Amide, and Protein 32:14 
   Biological Activity of Amines 32:50 
    Morphine (Opium Alkaloid) 32:51 
    Epibatidine (Poison Dart Frog) 33:28 
    Nicotine 33:48 
    Choline (Nerve Impulse) 34:03 

Section 11: Biomolecules & Polymers

  Biomolecules 1:53:20
   Intro 0:00 
   Carbohydrates 1:11 
    D-glucose Overview 1:12 
    D-glucose: Cyclic Form (6-membered ring) 4:31 
   Cyclic Forms of Glucose: 6-membered Ring 8:24 
    α-D-glucopyranose & β-D-glucopyranose 8:25 
   Formation of a 5-Membered Ring 11:05 
    D-glucose: Formation of a 5-Membered Ring 11:06 
   Cyclic Forms of Glucose: 5-membered Ring 12:37 
    α-D-glucofuranose & β-D-glucofuranose 12:38 
   Carbohydrate Mechanism 14:03 
    Carbohydrate Mechanism 14:04 
   Reactions of Glucose: Acetal Formation 21:35 
    Acetal Formation: Methyl-α-D-glucoside 21:36 
    Hemiacetal to Acetal: Overview 24:58 
   Mechanism for Formation of Glycosidic Bond 25:51 
    Hemiacetal to Acetal: Mechanism 25:52 
   Formation of Disaccharides 29:34 
    Formation of Disaccharides 29:35 
   Some Polysaccharides: Starch 31:33 
    Amylose & Amylopectin 31:34 
    Starch: α-1,4-glycosidic Bonds 32:22 
    Properties of Starch Molecule 33:21 
   Some Polysaccharides: Cellulose 33:59 
    Cellulose: β-1,4-glycosidic bonds 34:00 
    Properties of Cellulose 34:59 
   Other Sugar-Containing Biomolecules 35:50 
    Ribonucleoside (RNA) 35:51 
    Deoxyribonucleoside (DMA) 36:59 
   Amino Acids & Proteins 37:32 
    α-amino Acids: Structure & Stereochemistry 37:33 
   Making a Protein (Condensation) 42:46 
    Making a Protein (Condensation) 42:47 
   Peptide Bond is Planar (Amide Resonance) 44:55 
    Peptide Bond is Planar (Amide Resonance) 44:56 
   Protein Functions 47:49 
    Muscle, Skin, Bones, Hair Nails 47:50 
    Enzymes 49:10 
    Antibodies 49:44 
    Hormones, Hemoglobin 49:58 
    Gene Regulation 50:20 
   Various Amino Acid Side Chains 50:51 
    Nonpolar 50:52 
    Polar 51:15 
    Acidic 51:24 
    Basic 51:55 
   Amino Acid Table 52:22 
    Amino Acid Table 52:23 
   Isoelectric Point (pI) 53:43 
    Isoelectric Point (pI) of Glycine 53:44 
    Isoelectric Point (pI) of Glycine: pH 11 56:42 
    Isoelectric Point (pI) of Glycine: pH 1 57:20 
   Isoelectric Point (pI), cont. 58:05 
    Asparatic Acid 58:06 
    Histidine 60:28 
   Isoelectric Point (pI), cont. 62:54 
    Example: What is the Net Charge of This Tetrapeptide at pH 6.0? 62:55 
   Nucleic Acids: Ribonucleosides 70:32 
    Nucleic Acids: Ribonucleosides 70:33 
   Nucleic Acids: Ribonucleotides 71:48 
    Ribonucleotides: 5' Phosphorylated Ribonucleosides 71:49 
   Ribonucleic Acid (RNA) Structure 72:35 
    Ribonucleic Acid (RNA) Structure 72:36 
   Nucleic Acids: Deoxyribonucleosides 74:08 
    Nucleic Acids: Deoxyribonucleosides 74:09 
    Deoxythymidine (T) 74:36 
   Nucleic Acids: Base-Pairing 75:17 
    Nucleic Acids: Base-Pairing 75:18 
   Double-Stranded Structure of DNA 78:16 
    Double-Stranded Structure of DNA 78:17 
   Model of DNA 79:40 
    Model of DNA 79:41 
   Space-Filling Model of DNA 80:46 
    Space-Filling Model of DNA 80:47 
   Function of RNA and DNA 83:06 
    DNA & Transcription 83:07 
    RNA & Translation 84:22 
   Genetic Code 85:09 
    Genetic Code 85:10 
   Lipids/Fats/Triglycerides 87:10 
    Structure of Glycerol 87:43 
    Saturated & Unsaturated Fatty Acids 87:51 
    Triglyceride 88:43 
   Unsaturated Fats: Lower Melting Points (Liquids/Oils) 89:15 
    Saturated Fat 89:16 
    Unsaturated Fat 90:10 
    Partial Hydrogenation 92:05 
   Saponification of Fats 95:11 
    Saponification of Fats 95:12 
    History of Soap 96:50 
   Carboxylate Salts form Micelles in Water 101:02 
    Carboxylate Salts form Micelles in Water 101:03 
   Cleaning Power of Micelles 102:21 
    Cleaning Power of Micelles 102:22 
   3-D Image of a Micelle 102:58 
    3-D Image of a Micelle 102:59 
   Synthesis of Biodiesel 104:04 
    Synthesis of Biodiesel 104:05 
   Phosphoglycerides 107:54 
    Phosphoglycerides 107:55 
   Cell Membranes Contain Lipid Bilayers 108:41 
    Cell Membranes Contain Lipid Bilayers 108:42 
   Bilayer Acts as Barrier to Movement In/Out of Cell 110:24 
    Bilayer Acts as Barrier to Movement In/Out of Cell 110:25 
   Organic Chemistry Meets Biology… Biochemistry! 111:12 
    Organic Chemistry Meets Biology… Biochemistry! 111:13 
  Polymers 45:47
   Intro 0:00 
   Polymers 0:05 
    Monomer to Polymer: Vinyl Chloride to Polyvinyl Chloride 0:06 
   Polymer Properties 1:32 
    Polymer Properties 1:33 
   Natural Polymers: Rubber 2:30 
    Vulcanization 2:31 
   Natural Polymers: Polysaccharides 4:55 
    Example: Starch 4:56 
    Example: Cellulose 5:45 
   Natural Polymers: Proteins 6:07 
    Example: Keratin 6:08 
   DNA Strands 7:15 
    DNA Strands 7:16 
   Synthetic Polymers 8:30 
    Ethylene & Polyethylene: Lightweight Insulator & Airtight Plastic 8:31 
   Synthetic Organic Polymers 12:22 
    Polyethylene 12:28 
    Polyvinyl Chloride (PVC) 12:54 
    Polystyrene 13:28 
    Polyamide 14:34 
    Polymethyl Methacrylate 14:57 
    Kevlar 15:25 
    Synthetic Material Examples 16:30 
    How are Polymers Made? 21:00 
    Chain-growth Polymers Additions to Alkenes can be Radical, Cationic or Anionic 21:01 
   Chain Branching 22:34 
    Chain Branching 22:35 
   Special Reaction Conditions Prevent Branching 24:28 
    Ziegler-Natta Catalyst 24:29 
   Chain-Growth by Cationic Polymerization 27:35 
    Chain-Growth by Cationic Polymerization 27:36 
   Chain-Growth by Anionic Polymerization 29:35 
    Chain-Growth by Anionic Polymerization 29:36 
   Step-Growth Polymerization: Polyamides 32:16 
    Step-Growth Polymerization: Polyamides 32:17 
   Step-Growth Polymerization: Polyesters 34:23 
    Step-Growth Polymerization: Polyesters 34:24 
   Step-Growth Polymerization: Polycarbonates 35:56 
    Step-Growth Polymerization: Polycarbonates 35:57 
   Step-Growth Polymerization: Polyurethanes 37:18 
    Step-Growth Polymerization: Polyurethanes 37:19 
   Modifying Polymer Properties 39:35 
    Glass Transition Temperature 40:04 
    Crosslinking 40:42 
    Copolymers 40:58 
    Additives: Stabilizers 42:08 
    Additives: Flame Retardants 43:03 
    Additives: Plasticizers 43:41 
    Additives: Colorants 44:54 

Section 12: Organic Synthesis

  Organic Synthesis Strategies 2:20:24
   Intro 0:00 
   Organic Synthesis Strategies 0:15 
    Goal 0:16 
    Strategy 0:29 
   Example of a RetroSynthesis 1:30 
    Finding Starting Materials for Target Molecule 1:31 
    Synthesis Using Starting Materials 4:56 
   Synthesis of Alcohols by Functional Group Interconversion (FGI) 6:00 
    Synthesis of Alcohols by Functional Group Interconversion Overview 6:01 
   Alcohols by Reduction 7:43 
    Ketone to Alcohols 7:45 
    Aldehyde to Alcohols 8:26 
    Carboxylic Acid Derivative to Alcohols 8:36 
   Alcohols by Hydration of Alkenes 9:28 
    Hydration of Alkenes Using H₃O⁺ 9:29 
    Oxymercuration-Demercuration 10:35 
    Hydroboration Oxidation 11:02 
   Alcohols by Substitution 11:42 
    Primary Alkyl Halide to Alcohols Using NaOH 11:43 
    Secondary Alkyl Halide to Alcohols Using Sodium Acetate 13:07 
    Tertiary Alkyl Halide to Alcohols Using H₂O 15:08 
   Synthesis of Alcohols by Forming a New C-C Bond 15:47 
    Recall: Alcohol & RMgBr 15:48 
    Retrosynthesis 17:28 
   Other Alcohol Disconnections 19:46 
     19:47 
    Synthesis Using PhMGgBr: Example 2 23:05 
   Synthesis of Alkyl Halides 26:06 
    Synthesis of Alkyl Halides Overview 26:07 
   Synthesis of Alkyl Halides by Free Radical Halogenation 27:04 
    Synthesis of Alkyl Halides by Free Radical Halogenation 27:05 
   Synthesis of Alkyl Halides by Substitution 29:06 
    Alcohol to Alkyl Halides Using HBr or HCl 29:07 
    Alcohol to Alkyl Halides Using SOCl₂ 30:57 
    Alcohol to Alkyl Halides Using PBr₃ and Using P, I₂ 31:03 
   Synthesis of Alkyl Halides by Addition 32:02 
    Alkene to Alkyl Halides Using HBr 32:03 
    Alkene to Alkyl Halides Using HBr & ROOR (Peroxides) 32:35 
   Example: Synthesis of Alkyl Halide 34:18 
    Example: Synthesis of Alkyl Halide 34:19 
   Synthesis of Ethers 39:25 
    Synthesis of Ethers 39:26 
   Example: Synthesis of an Ether 41:12 
    Synthesize TBME (t-butyl methyl ether) from Alcohol Starting Materials 41:13 
   Synthesis of Amines 46:05 
    Synthesis of Amines 46:06 
   Gabriel Synthesis of Amines 47:57 
    Gabriel Synthesis of Amines 47:58 
   Amines by SN2 with Azide Nu: 49:50 
    Amines by SN2 with Azide Nu: 49:51 
   Amines by SN2 with Cyanide Nu: 50:31 
    Amines by SN2 with Cyanide Nu: 50:32 
   Amines by Reduction of Amides 51:30 
    Amines by Reduction of Amides 51:31 
   Reductive Amination of Ketones/Aldehydes 52:42 
    Reductive Amination of Ketones/Aldehydes 52:43 
   Example : Synthesis of an Amine 53:47 
    Example 1: Synthesis of an Amine 53:48 
    Example 2: Synthesis of an Amine 56:16 
   Synthesis of Alkenes 58:20 
    Synthesis of Alkenes Overview 58:21 
   Synthesis of Alkenes by Elimination 59:04 
    Synthesis of Alkenes by Elimination Using NaOH & Heat 59:05 
    Synthesis of Alkenes by Elimination Using H₂SO₄ & Heat 59:57 
   Synthesis of Alkenes by Reduction 62:05 
    Alkyne to Cis Alkene 62:06 
    Alkyne to Trans Alkene 62:56 
   Synthesis of Alkenes by Wittig Reaction 63:46 
    Synthesis of Alkenes by Wittig Reaction 63:47 
    Retrosynthesis of an Alkene 65:35 
   Example: Synthesis of an Alkene 66:57 
    Example: Synthesis of an Alkene 66:58 
    Making a Wittig Reagent 70:31 
   Synthesis of Alkynes 73:09 
    Synthesis of Alkynes 73:10 
   Synthesis of Alkynes by Elimination (FGI) 73:42 
    First Step: Bromination of Alkene 73:43 
    Second Step: KOH Heat 74:22 
   Synthesis of Alkynes by Alkylation 75:02 
    Synthesis of Alkynes by Alkylation 75:03 
    Retrosynthesis of an Alkyne 76:18 
   Example: Synthesis of an Alkyne 77:40 
    Example: Synthesis of an Alkyne 77:41 
   Synthesis of Alkanes 80:52 
    Synthesis of Alkanes 80:53 
   Synthesis of Aldehydes & Ketones 81:38 
    Oxidation of Alcohol Using PCC or Swern 81:39 
    Oxidation of Alkene Using 1) O₃, 2)Zn 82:42 
    Reduction of Acid Chloride & Nitrile Using DiBAL-H 83:25 
    Hydration of Alkynes 84:55 
    Synthesis of Ketones by Acyl Substitution 86:12 
    Reaction with R'₂CuLi 86:13 
    Reaction with R'MgBr 87:13 
   Synthesis of Aldehydes & Ketones by α-Alkylation 88:00 
    Synthesis of Aldehydes & Ketones by α-Alkylation 88:01 
    Retrosynthesis of a Ketone 90:10 
   Acetoacetate Ester Synthesis of Ketones 91:05 
    Acetoacetate Ester Synthesis of Ketones: Step 1 91:06 
    Acetoacetate Ester Synthesis of Ketones: Step 2 92:13 
    Acetoacetate Ester Synthesis of Ketones: Step 3 92:50 
   Example: Synthesis of a Ketone 94:11 
    Example: Synthesis of a Ketone 94:12 
   Synthesis of Carboxylic Acids 97:15 
    Synthesis of Carboxylic Acids 97:16 
   Example: Synthesis of a Carboxylic Acid 97:59 
    Example: Synthesis of a Carboxylic Acid (Option 1) 98:00 
    Example: Synthesis of a Carboxylic Acid (Option 2) 100:51 
   Malonic Ester Synthesis of Carboxylic Acid 102:34 
    Malonic Ester Synthesis of Carboxylic Acid: Step 1 102:35 
    Malonic Ester Synthesis of Carboxylic Acid: Step 2 103:36 
    Malonic Ester Synthesis of Carboxylic Acid: Step 3 104:01 
   Example: Synthesis of a Carboxylic Acid 104:53 
    Example: Synthesis of a Carboxylic Acid 104:54 
   Synthesis of Carboxylic Acid Derivatives 108:05 
    Synthesis of Carboxylic Acid Derivatives 108:06 
   Alternate Ester Synthesis 108:58 
    Using Fischer Esterification 108:59 
    Using SN2 Reaction 110:18 
    Using Diazomethane 110:56 
    Using 1) LDA, 2) R'-X 112:15 
   Practice: Synthesis of an Alkyl Chloride 113:11 
    Practice: Synthesis of an Alkyl Chloride 113:12 
   Patterns of Functional Groups in Target Molecules 119:53 
    Recall: Aldol Reaction 119:54 
    β-hydroxy Ketone Target Molecule 121:12 
    α,β-unsaturated Ketone Target Molecule 122:20 
   Patterns of Functional Groups in Target Molecules 123:15 
    Recall: Michael Reaction 123:16 
    Retrosynthesis: 1,5-dicarbonyl Target Molecule 124:07 
   Patterns of Functional Groups in Target Molecules 126:38 
    Recall: Claisen Condensation 126:39 
    Retrosynthesis: β-ketoester Target Molecule 127:30 
   2-Group Target Molecule Summary 129:03 
    2-Group Target Molecule Summary 129:04 
   Example: Synthesis of Epoxy Ketone 131:19 
    Synthesize the Following Target Molecule from Cyclohexanone: Part 1 - Retrosynthesis 131:20 
    Synthesize the Following Target Molecule from Cyclohexanone: Part 2 - Synthesis 134:10 
   Example: Synthesis of a Diketone 136:57 
    Synthesis of a Diketone: Step 1 - Retrosynthesis 136:58 
    Synthesis of a Diketone: Step 2 - Synthesis 138:51 

Section 12: Organic Synthesis & Organic Analysis

  Organic Analysis: Classical & Modern Methods 46:46
   Intro 0:00 
   Organic Analysis: Classical Methods 0:17 
    Classical Methods for Identifying Chemicals 0:18 
   Organic Analysis: Classical Methods 2:21 
    When is Structure Identification Needed? 2:22 
   Organic Analysis: Classical Methods 6:17 
    Classical Methods of Structure Identification: Physical Appearance 6:18 
    Classical Methods of Structure Identification: Physical Constants 6:42 
   Organic Analysis: Classical Methods 7:37 
    Classical Methods of Structure Identification: Solubility Tests - Water 7:38 
   Organic Analysis: Classical Methods 10:51 
    Classical Methods of Structure Identification: Solubility Tests - 5% aq. HCl Basic FG (Amines) 10:52 
   Organic Analysis: Classical Methods 11:50 
    Classical Methods of Structure Identification: Solubility Tests - 5% aq. NaOH Acidic FG (Carboxylic Acids, Phenols) 11:51 
   Organic Analysis: Classical Methods 13:28 
    Classical Methods of Structure Identification: Solubility Tests - 5% aq. NaHCO3 Strongly Acidic FG (Carboxylic Acids) 13:29 
   Organic Analysis: Classical Methods 15:35 
    Classical Methods of Structure Identification: Solubility Tests - Insoluble in All of the Above 15:36 
   Organic Analysis: Classical Methods 16:49 
    Classical Methods of Structure Identification: Idoform Test for Methyl Ketones 16:50 
   Organic Analysis: Classical Methods 22:02 
    Classical Methods of Structure Identification: Tollens' Test or Fehling's Solution for Aldehydes 22:03 
   Organic Analysis: Classical Methods 25:01 
    Useful Application of Classical Methods: Glucose Oxidase on Glucose Test Strips 25:02 
   Organic Analysis: Classical Methods 26:26 
    Classical Methods of Structure Identification: Starch-iodide Test 26:27 
   Organic Analysis: Classical Methods 28:22 
    Classical Methods of Structure Identification: Lucas Reagent to Determine Primary/Secondary/Tertiary Alcohol 28:23 
   Organic Analysis: Classical Methods 31:35 
    Classical Methods of Structure Identification: Silver Nitrate Test for Alkyl Halides 31:36 
   Organic Analysis: Classical Methods 33:23 
    Preparation of Derivatives 33:24 
   Organic Analysis: Modern Methods 36:55 
    Modern Methods of Chemical Characterization 36:56 
   Organic Analysis: Modern Methods 40:36 
    Checklist for Manuscripts Submitted to the ACS Journal Organic Letters 40:37 
   Organic Analysis: Modern Methods 42:39 
    Checklist for Manuscripts Submitted to the ACS Journal Organic Letters 42:40 
  Analysis of Stereochemistry 1:02:52
   Intro 0:00 
   Chirality & Optical Activity 0:32 
    Levorotatory & Dextrorotatory 0:33 
   Example: Optically Active? 2:22 
    Example: Optically Active? 2:23 
   Measurement of Specific Rotation, [α] 5:09 
    Measurement of Specific Rotation, [α] 5:10 
   Example: Calculation of Specific Rotation 8:56 
    Example: Calculation of Specific Rotation 8:57 
   Variability of Specific Rotation, [α] 12:52 
    Variability of Specific Rotation, [α] 12:53 
   Other Measures of Optical Activity: ORD and CD 15:04 
    Optical Rotary Dispersion (ORD) 15:05 
   Circular Dischroism (CD) 18:32 
    Circular Dischroism (CD) 18:33 
   Mixtures of Enantiomers 20:16 
    Racemic Mixtures 20:17 
    Unequal Mixtures of Enantiomers 21:36 
    100% ee 22:48 
    0% ee 23:34 
   Example: Definition of ee? 24:00 
    Example: Definition of ee? 24:01 
   Analysis of Optical Purity: [α] 27:47 
    [α] Measurement Can Be Used for Known Compounds 27:48 
   Analysis of Optical Purity: [α] 34:30 
    NMR Methods Using a Chiral Derivatizing Agent (CDA): Mosher's Reagent 34:31 
   Analysis of Optical Purity: [α] 40:01 
    NMR Methods Using a Chiral Derivatizing Agent (CDA): CDA Salt Formation 40:02 
   Analysis of Optical Purity: Chromatography 42:46 
    Chiral Chromatography 42:47 
   Stereochemistry Analysis by NMR: J Values (Coupling Constant) 51:28 
    NMR Methods for Structure Determination 51:29 
   Stereochemistry Analysis by NRM: NOE 57:00 
    NOE - Nuclear Overhauser Effect ( 2D Versions: NOESY or ROESY) 57:01 

Section 13: Spectroscopy

  Infrared Spectroscopy, Part I 1:04:00
   Intro 0:00 
   Infrared (IR) Spectroscopy 0:09 
    Introduction to Infrared (IR) Spectroscopy 0:10 
    Intensity of Absorption Is Proportional to Change in Dipole 3:08 
   IR Spectrum of an Alkane 6:08 
    Pentane 6:09 
   IR Spectrum of an Alkene 13:12 
    1-Pentene 13:13 
   IR Spectrum of an Alkyne 15:49 
    1-Pentyne 15:50 
   IR Spectrum of an Aromatic Compound 18:2 
    Methylbenzene 18:24 
   IR of Substituted Aromatic Compounds 24:04 
    IR of Substituted Aromatic Compounds 24:05 
   IR Spectrum of 1,2-Disubstituted Aromatic 25:30 
    1,2-dimethylbenzene 25:31 
   IR Spectrum of 1,3-Disubstituted Aromatic 27:15 
    1,3-dimethylbenzene 27:16 
   IR Spectrum of 1,4-Disubstituted Aromatic 28:41 
    1,4-dimethylbenzene 28:42 
   IR Spectrum of an Alcohol 29:34 
    1-pentanol 29:35 
   IR Spectrum of an Amine 32:39 
    1-butanamine 32:40 
   IR Spectrum of a 2° Amine 34:50 
    Diethylamine 34:51 
   IR Spectrum of a 3° Amine 35:47 
    Triethylamine 35:48 
   IR Spectrum of a Ketone 36:41 
    2-butanone 36:42 
   IR Spectrum of an Aldehyde 40:10 
    Pentanal 40:11 
   IR Spectrum of an Ester 42:38 
    Butyl Propanoate 42:39 
   IR Spectrum of a Carboxylic Acid 44:26 
    Butanoic Acid 44:27 
   Sample IR Correlation Chart 47:36 
    Sample IR Correlation Chart: Wavenumber and Functional Group 47:37 
   Predicting IR Spectra: Sample Structures 52:06 
    Example 1 52:07 
    Example 2 53:29 
    Example 3 54:40 
    Example 4 57:08 
    Example 5 58:31 
    Example 6 59:07 
    Example 7 60:52 
    Example 8 62:20 
  Infrared Spectroscopy, Part II 48:34
   Intro 0:00 
   Interpretation of IR Spectra: a Basic Approach 0:05 
    Interpretation of IR Spectra: a Basic Approach 0:06 
    Other Peaks to Look for 3:39 
   Examples 5:17 
    Example 1 5:18 
    Example 2 9:09 
    Example 3 11:52 
    Example 4 14:03 
    Example 5 16:31 
    Example 6 19:31 
    Example 7 22:32 
    Example 8 24:39 
   IR Problems Part 1 28:11 
    IR Problem 1 28:12 
    IR Problem 2 31:14 
    IR Problem 3 32:59 
    IR Problem 4 34:23 
    IR Problem 5 35:49 
    IR Problem 6 38:20 
   IR Problems Part 2 42:36 
    IR Problem 7 42:37 
    IR Problem 8 44:02 
    IR Problem 9 45:07 
    IR Problems10 46:10 
  Nuclear Magnetic Resonance (NMR) Spectroscopy, Part I 1:32:14
   Intro 0:00 
   Purpose of NMR 0:14 
    Purpose of NMR 0:15 
   How NMR Works 2:17 
    How NMR Works 2:18 
   Information Obtained From a ¹H NMR Spectrum 5:51 
    No. of Signals, Integration, Chemical Shifts, and Splitting Patterns 5:52 
   Number of Signals in NMR (Chemical Equivalence) 7:52 
    Example 1: How Many Signals in ¹H NMR? 7:53 
    Example 2: How Many Signals in ¹H NMR? 9:36 
    Example 3: How Many Signals in ¹H NMR? 12:15 
    Example 4: How Many Signals in ¹H NMR? 13:47 
    Example 5: How Many Signals in ¹H NMR? 16:12 
   Size of Signals in NMR (Peak Area or Integration) 21:23 
    Size of Signals in NMR (Peak Area or Integration) 21:24 
   Using Integral Trails 25:15 
    Example 1: C₈H₁₈O 25:16 
    Example 2: C₃H₈O 27:17 
    Example 3: C₇H₈ 28:21 
   Location of NMR Signal (Chemical Shift) 29:05 
    Location of NMR Signal (Chemical Shift) 29:06 
   ¹H NMR Chemical Shifts 33:20 
    ¹H NMR Chemical Shifts 33:21 
   ¹H NMR Chemical Shifts (Protons on Carbon) 37:03 
    ¹H NMR Chemical Shifts (Protons on Carbon) 37:04 
   Chemical Shifts of H's on N or O 39:01 
    Chemical Shifts of H's on N or O 39:02 
   Estimating Chemical Shifts 41:13 
    Example 1: Estimating Chemical Shifts 41:14 
    Example 2: Estimating Chemical Shifts 43:22 
    Functional Group Effects are Additive 45:28 
   Calculating Chemical Shifts 47:38 
    Methylene Calculation 47:39 
    Methine Calculation 48:20 
    Protons on sp³ Carbons: Chemical Shift Calculation Table 48:50 
    Example: Estimate the Chemical Shift of the Selected H 50:29 
   Effects of Resonance on Chemical Shifts 53:11 
    Example 1: Effects of Resonance on Chemical Shifts 53:12 
    Example 2: Effects of Resonance on Chemical Shifts 55:09 
    Example 3: Effects of Resonance on Chemical Shifts 57:08 
   Shape of NMR Signal (Splitting Patterns) 59:17 
    Shape of NMR Signal (Splitting Patterns) 59:18 
   Understanding Splitting Patterns: The 'n+1 Rule' 61:24 
    Understanding Splitting Patterns: The 'n+1 Rule' 61:25 
   Explanation of n+1 Rule 62:42 
    Explanation of n+1 Rule: One Neighbor 62:43 
    Explanation of n+1 Rule: Two Neighbors 66:23 
   Summary of Splitting Patterns 66:24 
    Summary of Splitting Patterns 70:45 
   Predicting ¹H NMR Spectra 70:46 
    Example 1: Predicting ¹H NMR Spectra 73:30 
    Example 2: Predicting ¹H NMR Spectra 79:07 
    Example 3: Predicting ¹H NMR Spectra 83:50 
    Example 4: Predicting ¹H NMR Spectra 89:27 
  Nuclear Magnetic Resonance (NMR) Spectroscopy, Part II 2:03:48
   Intro 0:00 
   ¹H NMR Problem-Solving Strategies 0:18 
    Step 1: Analyze IR Spectrum (If Provided) 0:19 
    Step 2: Analyze Molecular Formula (If Provided) 2:06 
    Step 3: Draw Pieces of Molecule 3:49 
    Step 4: Confirm Pieces 6:30 
    Step 5: Put the Pieces Together! 7:23 
    Step 6: Check Your Answer! 8:21 
   Examples 9:17 
    Example 1: Determine the Structure of a C₉H₁₀O₂ Compound with the Following ¹H NMR Data 9:18 
    Example 2: Determine the Structure of a C₉H₁₀O₂ Compound with the Following ¹H NMR Data 17:27 
   ¹H NMR Practice 20:57 
    ¹H NMR Practice 1: C₁₀H₁₄ 20:58 
    ¹H NMR Practice 2: C₄H₈O₂ 29:50 
    ¹H NMR Practice 3: C₆H₁₂O₃ 39:19 
    ¹H NMR Practice 4: C₈H₁₈ 50:19 
   More About Coupling Constants (J Values) 57:11 
    Vicinal (3-bond) and Geminal (2-bond) 57:12 
    Cyclohexane (ax-ax) and Cyclohexane (ax-eq) or (eq-eq) 59:50 
    Geminal (Alkene), Cis (Alkene), and Trans (Alkene) 62:40 
    Allylic (4-bond) and W-coupling (4-bond) (Rigid Structures Only) 64:05 
   ¹H NMR Advanced Splitting Patterns 65:39 
    Example 1: ¹H NMR Advanced Splitting Patterns 65:40 
    Example 2: ¹H NMR Advanced Splitting Patterns 70:01 
    Example 3: ¹H NMR Advanced Splitting Patterns 73:45 
   ¹H NMR Practice 82:53 
    ¹H NMR Practice 5: C₁₁H₁₇N 82:54 
    ¹H NMR Practice 6: C₉H₁₀O 94:04 
   ¹³C NMR Spectroscopy 104:49 
    ¹³C NMR Spectroscopy 104:50 
   ¹³C NMR Chemical Shifts 107:24 
    ¹³C NMR Chemical Shifts Part 1 107:25 
    ¹³C NMR Chemical Shifts Part 2 108:59 
   ¹³C NMR Practice 110:16 
    ¹³C NMR Practice 1 110:17 
    ¹³C NMR Practice 2 118:30 
  C-13 DEPT NMR Experiments 23:10
   Intro 0:00 
   C-13 DEPT NMR Spectoscopy 0:13 
    Overview 0:14 
   C-13 DEPT NMR Spectoscopy, Cont. 3:31 
    Match C-13 Peaks to Carbons on Structure 3:32 
   C-13 DEPT NMR Spectoscopy, Cont. 8:46 
    Predict the DEPT-90 and DEPT-135 Spectra for the Given Compound 8:47 
   C-13 DEPT NMR Spectoscopy, Cont. 12:30 
    Predict the DEPT-90 and DEPT-135 Spectra for the Given Compound 12:31 
   C-13 DEPT NMR Spectoscopy, Cont. 17:19 
    Determine the Structure of an Unknown Compound using IR Spectrum and C-13 DEPT NMR 17:20 
  Two-Dimensional NMR Techniques: COSY 33:39
   Intro 0:00 
   Two-Dimensional NMR Techniques: COSY 0:14 
    How Do We Determine Which Protons are Related in the NMR? 0:15 
   Two-Dimensional NMR Techniques: COSY 1:48 
    COSY Spectra 1:49 
   Two-Dimensional NMR Techniques: COSY 7:00 
    COSY Correlation 7:01 
   Two-Dimensional NMR Techniques: COSY 8:55 
    Complete the COSY NMR Spectrum for the Given Compoun 8:56 
   NMR Practice Problem 15:40 
    Provide a Structure for the Unknown Compound with the H NMR and COSY Spectra Shown 15:41 
  Two-Dimensional NMR Techniques: HETCOR & HMBC 15:05
   Intro 0:00 
   HETCOR 0:15 
    Heteronuclear Correlation Spectroscopy 0:16 
   HETCOR 2:04 
    HETCOR Example 2:05 
   HMBC 11:07 
    Heteronuclear Multiple Bond Correlation 11:08 
   HMBC 13:14 
    HMB Example 13:15 
  Mass Spectrometry 1:28:35
   Intro 0:00 
   Introduction to Mass Spectrometry 0:37 
    Uses of Mass Spectrometry: Molecular Mass 0:38 
    Uses of Mass Spectrometry: Molecular Formula 1:04 
    Uses of Mass Spectrometry: Structural Information 1:21 
    Uses of Mass Spectrometry: In Conjunction with Gas Chromatography 2:03 
   Obtaining a Mass Spectrum 2:59 
    Obtaining a Mass Spectrum 3:00 
   The Components of a Mass Spectrum 6:44 
    The Components of a Mass Spectrum 6:45 
   What is the Mass of a Single Molecule 12:13 
    Example: CH₄ 12:14 
    Example: ¹³CH₄ 12:51 
    What Ratio is Expected for the Molecular Ion Peaks of C₂H₆? 14:20 
   Other Isotopes of High Abundance 16:30 
    Example: Cl Atoms 16:31 
    Example: Br Atoms 18:33 
    Mass Spectrometry of Chloroethane 19:22 
    Mass Spectrometry of Bromobutane 21:23 
   Isotopic Abundance can be Calculated 22:48 
    What Ratios are Expected for the Molecular Ion Peaks of CH₂Br₂? 22:49 
   Determining Molecular Formula from High-resolution Mass Spectrometry 26:53 
    Exact Masses of Various Elements 26:54 
   Fragmentation of various Functional Groups 28:42 
    What is More Stable, a Carbocation C⁺ or a Radical R? 28:43 
    Fragmentation is More Likely If It Gives Relatively Stable Carbocations and Radicals 31:37 
   Mass Spectra of Alkanes 33:15 
    Example: Hexane 33:16 
    Fragmentation Method 1 34:19 
    Fragmentation Method 2 35:46 
    Fragmentation Method 3 36:15 
   Mass of Common Fragments 37:07 
    Mass of Common Fragments 37:08 
   Mass Spectra of Alkanes 39:28 
    Mass Spectra of Alkanes 39:29 
    What are the Peaks at m/z 15 and 71 So Small? 41:01 
   Branched Alkanes 43:12 
    Explain Why the Base Peak of 2-methylhexane is at m/z 43 (M-57) 43:13 
   Mass Spectra of Alkenes 45:42 
    Mass Spectra of Alkenes: Remove 1 e⁻ 45:43 
    Mass Spectra of Alkenes: Fragment 46:14 
    High-Energy Pi Electron is Most Likely Removed 47:59 
   Mass Spectra of Aromatic Compounds 49:01 
    Mass Spectra of Aromatic Compounds 49:02 
   Mass Spectra of Alcohols 51:32 
    Mass Spectra of Alcohols 51:33 
   Mass Spectra of Ethers 54:53 
    Mass Spectra of Ethers 54:54 
   Mass Spectra of Amines 56:49 
    Mass Spectra of Amines 56:50 
   Mass Spectra of Aldehydes & Ketones 59:23 
    Mass Spectra of Aldehydes & Ketones 59:24 
   McLafferty Rearrangement 61:29 
    McLafferty Rearrangement 61:30 
   Mass Spectra of Esters 64:15 
    Mass Spectra of Esters 61:16 
   Mass Spectrometry Discussion I 65:01 
    For the Given Molecule (M=58), Do You Expect the More Abundant Peak to Be m/z 15 or m/z 43? 65:02 
   Mass Spectrometry Discussion II 68:13 
    For the Given Molecule (M=74), Do You Expect the More Abundant Peak to Be m/z 31, m/z 45, or m/z 59? 68:14 
   Mass Spectrometry Discussion III 71:42 
    Explain Why the Mass Spectra of Methyl Ketones Typically have a Peak at m/z 43 71:43 
   Mass Spectrometry Discussion IV 74:46 
    In the Mass Spectrum of the Given Molecule (M=88), Account for the Peaks at m/z 45 and m/z 57 74:47 
   Mass Spectrometry Discussion V 78:25 
    How Could You Use Mass Spectrometry to Distinguish Between the Following Two Compounds (M=73)? 78:26 
   Mass Spectrometry Discussion VI 82:45 
    What Would be the m/z Ratio for the Fragment for the Fragment Resulting from a McLafferty Rearrangement for the Following Molecule (M=114)? 82:46 

Section 14: Organic Chemistry Lab

  Completing the Reagent Table for Prelab 21:09
   Intro 0:00 
   Sample Reagent Table 0:11 
    Reagent Table Overview 0:12 
    Calculate Moles of 2-bromoaniline 6:44 
   Calculate Molar Amounts of Each Reagent 9:20 
    Calculate Mole of NaNO₂ 9:21 
    Calculate Moles of KI 10:33 
   Identify the Limiting Reagent 11:17 
    Which Reagent is the Limiting Reagent? 11:18 
   Calculate Molar Equivalents 13:37 
    Molar Equivalents 13:38 
   Calculate Theoretical Yield 16:40 
    Theoretical Yield 16:41 
   Calculate Actual Yield (%Yield) 18:30 
    Actual Yield (%Yield) 18:31 
  Introduction to Melting Points 16:10
   Intro 0:00 
   Definition of a Melting Point (mp) 0:04 
    Definition of a Melting Point (mp) 0:05 
    Solid Samples Melt Gradually 1:49 
    Recording Range of Melting Temperature 2:04 
   Melting Point Theory 3:14 
    Melting Point Theory 3:15 
   Effects of Impurities on a Melting Point 3:57 
    Effects of Impurities on a Melting Point 3:58 
    Special Exception: Eutectic Mixtures 5:09 
    Freezing Point Depression by Solutes 5:39 
   Melting Point Uses 6:19 
    Solid Compound 6:20 
    Determine Purity of a Sample 6:42 
    Identify an Unknown Solid 7:06 
   Recording a Melting Point 9:03 
    Pack 1-3 mm of Dry Powder in MP Tube 9:04 
    Slowly Heat Sample 9:55 
    Record Temperature at First Sign of Melting 10:33 
    Record Temperature When Last Crystal Disappears 11:26 
    Discard MP Tube in Glass Waste 11:32 
    Determine Approximate MP 11:42 
   Tips, Tricks and Warnings 12:28 
    Use Small, Tightly Packed Sample 12:29 
    Be Sure MP Apparatus is Cool 12:45 
    Never Reuse a MP Tube 13:16 
    Sample May Decompose 13:30 
    If Pure Melting Point (MP) Doesn't Match Literature 14:20 
  Melting Point Lab 8:17
   Intro 0:00 
   Melting Point Tubes 0:40 
   Melting Point Apparatus 3:42 
   Recording a melting Point 5:50 
  Introduction to Recrystallization 22:00
   Intro 0:00 
   Crystallization to Purify a Solid 0:10 
    Crude Solid 0:11 
    Hot Solution 0:20 
    Crystals 1:09 
    Supernatant Liquid 1:20 
   Theory of Crystallization 2:34 
    Theory of Crystallization 2:35 
   Analysis and Obtaining a Second Crop 3:40 
    Crystals → Melting Point, TLC 3:41 
    Supernatant Liquid → Crude Solid → Pure Solid 4:18 
    Crystallize Again → Pure Solid (2nd Crop) 4:32 
   Choosing a Solvent 5:19 
    1. Product is Very Soluble at High Temperatures 5:20 
    2. Product has Low Solubility at Low Temperatures 6:00 
    3. Impurities are Soluble at All Temperatures 6:16 
    Check Handbooks for Suitable Solvents 7:33 
   Why Isn't This Dissolving?! 8:46 
    If Solid Remains When Solution is Hot 8:47 
    Still Not Dissolved in Hot Solvent? 10:18 
   Where Are My Crystals?! 12:23 
    If No Crystals Form When Solution is Cooled 12:24 
    Still No Crystals? 14:59 
   Tips, Tricks and Warnings 16:26 
    Always Use a Boiling Chip or Stick! 16:27 
    Use Charcoal to Remove Colored Impurities 16:52 
    Solvent Pairs May Be Used 18:23 
    Product May 'Oil Out' 20:11 
  Recrystallization Lab 19:07
   Intro 0:00 
   Step 1: Dissolving the Solute in the Solvent 0:12 
   Hot Filtration 6:33 
   Step 2: Cooling the Solution 8:01 
   Step 3: Filtering the Crystals 12:08 
   Step 4: Removing & Drying the Crystals 16:10 
  Introduction to Distillation 25:54
   Intro 0:00 
   Distillation: Purify a Liquid 0:04 
    Simple Distillation 0:05 
    Fractional Distillation 0:55 
   Theory of Distillation 1:04 
    Theory of Distillation 1:05 
   Vapor Pressure and Volatility 1:52 
    Vapor Pressure 1:53 
    Volatile Liquid 2:28 
    Less Volatile Liquid 3:09 
   Vapor Pressure vs. Boiling Point 4:03 
    Vapor Pressure vs. Boiling Point 4:04 
    Increasing Vapor Pressure 4:38 
   The Purpose of Boiling Chips 6:46 
    The Purpose of Boiling Chips 6:47 
   Homogeneous Mixtures of Liquids 9:24 
    Dalton's Law 9:25 
    Raoult's Law 10:27 
   Distilling a Mixture of Two Liquids 11:41 
    Distilling a Mixture of Two Liquids 11:42 
   Simple Distillation: Changing Vapor Composition 12:06 
    Vapor & Liquid 12:07 
    Simple Distillation: Changing Vapor Composition 14:47 
    Azeotrope 18:41 
   Fractional Distillation: Constant Vapor Composition 19:42 
    Fractional Distillation: Constant Vapor Composition 19:43 
  Distillation Lab 24:13
   Intro 0:00 
   Glassware Overview 0:04 
   Heating a Sample 3:09 
    Bunsen Burner 3:10 
    Heating Mantle 1 4:45 
    Heating Mantle 2 6:18 
    Hot Plate 7:10 
   Simple Distillation Lab 8:37 
   Fractional Distillation Lab 17:13 
   Removing the Distillation Set-Up 22:41 
  Introduction to TLC (Thin-Layer Chromatography) 28:51
   Intro 0:00 
   Chromatography 0:06 
    Purification & Analysis 0:07 
    Types of Chromatography: Thin-layer, Column, Gas, & High Performance Liquid 0:24 
   Theory of Chromatography 0:44 
    Theory of Chromatography 0:45 
   Performing a Thin-layer Chromatography (TLC) Analysis 2:30 
    Overview: Thin-layer Chromatography (TLC) Analysis 2:31 
   Step 1: 'Spot' the TLC Plate 4:11 
   Step 2: Prepare the Developing Chamber 5:54 
   Step 3: Develop the TLC Plate 7:30 
   Step 4: Visualize the Spots 9:02 
   Step 5: Calculate the Rf for Each Spot 12:00 
   Compound Polarity: Effect on Rf 16:50 
    Compound Polarity: Effect on Rf 16:51 
   Solvent Polarity: Effect on Rf 18:47 
    Solvent Polarity: Effect on Rf 18:48 
    Example: EtOAc & Hexane 19:35 
   Other Types of Chromatography 22:27 
    Thin-layer Chromatography (TLC) 22:28 
    Column Chromatography 22:56 
    High Performance Liquid (HPLC) 23:59 
    Gas Chromatography (GC) 24:38 
    Preparative 'prep' Scale Possible 28:05 
  TLC Analysis Lab 20:50
   Intro 0:00 
   Step 1: 'Spot' the TLC Plate 0:06 
   Step 2: Prepare the Developing Chamber 4:06 
   Step 3: Develop the TLC Plate 6:26 
   Step 4: Visualize the Spots 7:45 
   Step 5: Calculate the Rf for Each Spot 11:48 
   How to Make Spotters 12:58 
   TLC Plate 16:04 
   Flash Column Chromatography 17:11 
  Introduction to Extractions 34:25
   Intro 0:00 
   Extraction Purify, Separate Mixtures 0:07 
    Adding a Second Solvent 0:28 
    Mixing Two Layers 0:38 
    Layers Settle 0:54 
    Separate Layers 1:05 
   Extraction Uses 1:20 
    To Separate Based on Difference in Solubility/Polarity 1:21 
    To Separate Based on Differences in Reactivity 2:11 
    Separate & Isolate 2:20 
   Theory of Extraction 3:03 
    Aqueous & Organic Phases 3:04 
    Solubility: 'Like Dissolves Like' 3:25 
    Separation of Layers 4:06 
    Partitioning 4:14 
   Distribution Coefficient, K 5:03 
    Solutes Partition Between Phases 5:04 
    Distribution Coefficient, K at Equilibrium 6:27 
   Acid-Base Extractions 8:09 
    Organic Layer 8:10 
    Adding Aqueous HCl & Mixing Two Layers 8:46 
    Neutralize (Adding Aqueous NaOH) 10:05 
    Adding Organic Solvent Mix Two Layers 'Back Extract' 10:24 
    Final Results 10:43 
   Planning an Acid-Base Extraction, Part 1 11:01 
    Solute Type: Neutral 11:02 
    Aqueous Solution: Water 13:40 
    Solute Type: Basic 14:43 
    Solute Type: Weakly Acidic 15:23 
    Solute Type: Acidic 16:12 
   Planning an Acid-Base Extraction, Part 2 17:34 
    Planning an Acid-Base Extraction 17:35 
   Performing an Extraction 19:34 
    Pour Solution into Sep Funnel 19:35 
    Add Second Liquid 20:07 
    Add Stopper, Cover with Hand, Remove from Ring 20:48 
    Tip Upside Down, Open Stopcock to Vent Pressure 21:00 
    Shake to Mix Two Layers 21:30 
    Remove Stopper & Drain Bottom Layer 21:40 
   Reaction Work-up: Purify, Isolate Product 22:03 
    Typical Reaction is Run in Organic Solvent 22:04 
    Starting a Reaction Work-up 22:33 
    Extracting the Product with Organic Solvent 23:17 
    Combined Extracts are Washed 23:40 
    Organic Layer is 'Dried' 24:23 
   Finding the Product 26:38 
    Which Layer is Which? 26:39 
    Where is My Product? 28:00 
   Tips, Tricks and Warnings 29:29 
    Leaking Sep Funnel 29:30 
    Caution When Mixing Layers & Using Ether 30:17 
    If an Emulsion Forms 31:51 
  Extraction Lab 14:49
   Intro 0:00 
   Step 1: Preparing the Separatory Funnel 0:03 
   Step 2: Adding Sample 1:18 
   Step 3: Mixing the Two Layers 2:59 
   Step 4: Draining the Bottom Layers 4:59 
   Step 5: Performing a Second Extraction 5:50 
   Step 6: Drying the Organic Layer 7:21 
   Step 7: Gravity Filtration 9:35 
   Possible Extraction Challenges 12:55 

Duration: 54 hours, 03 minutes

Number of Lessons: 42

This online course is crucial for students who want to ace Organic Chemistry in order to satisfy their college degree or pre-medical requirements. Lessons go in-depth and are followed with numerous examples similar to those found on organic chemistry exams and qualifying tests. In addition to standard video lessons, Dr. Starkey also covers the most important labs through a series of dry laboratory walkthroughs complete with equipment and explanations.

Additional Features:

  • Free Sample Lessons
  • Closed Captioning (CC)
  • Practice Questions
  • Downloadable Lecture Slides
  • Instructor Comments

Topics Include:

  • Lewis Structures & Resonance
  • Substitution Reactions
  • Alkanes/Alkenes/Alkynes
  • Ethers/Thiols/Thioethers/Ketones
  • Carboxylic Acids
  • Enols & Enolates
  • Aromatic Compounds
  • Dienes & Amines
  • Biomolecules
  • Spectroscopy
  • Laboratories

Dr. Laurie Starkey is the author of Introduction to Strategies for Organic Synthesis (Wiley) and earned her Ph.D. in Chemistry from UCLA. She has been teaching Organic Chemistry at the university level for over 20 years and most recently won the 2013 Provost's Award for Excellence in Teaching, Cal Poly Pomona's highest teaching award.

Student Testimonials:

“Wow, I wish this had been available when I started organic chemistry! I have been watching your other o-chem videos religiously to get me through the lecture class (with A's so far...orgo II final is in 3 days)! Just want to say I am forever grateful to you for the help!!!” — Rene W.

“Hello, I am a medical student at Tel Aviv University. Because of your wonderful explanations, I'm starting to love organic chemistry. Thank you very much.” — Sarit N.

“I am currently studying for the MCAT and your lecture series has been incredibly helpful. I have taken OChem before in my BSc, and this is an excellent review! I feel like I've gone through an entire year of OChem in just over a month. Thank you Dr. Starkey for your in-depth lectures and clearly stated demonstrations in each!” — Damien L.

"I really like this video and the tools you used! I wish there are more professors like you. Thank you so much. I just wanted to say that because you made ochem seem less scary compared to the rumors." —Valerie P.

“Just a quick note to thank you for your informative and engaging lectures. I used Educator.com and your lab tutorials as supplemental sources to reinforce my understanding of my Organic Chemistry II coursework. Your detailed and clear explanations of complex concepts helped me earn an "A" in both lecture and lab. Thank you! :)” — Heidi S.

Visit Dr. Starkey’s page

Student Feedback

4.9

181 Reviews

47%
52%
1%
0%
0%
By Curtis MarriottFebruary 17, 2019
professor, your videos are great,but at the  1:20 :39 mark it keeps looping. this has occurred with some of the other videos as well
By Anthony VillaramaJanuary 9, 2019
My golly. For many years, I have not understand completely  the entire topic of Stereochemisty, but today in two hours, I understood everything. You are so good that I really want to marry someone like you someday. hahahaha
By Mohammad Abdel-halimJuly 24, 2018
Hello Professor,
Example 4 at min 66, will the product coming from the allylic carbocation which has the charge on the 2ry carbon the major one?

Thank you
By Parsa AbadiMay 14, 2018
At 6:03 why is it dimethylethyl and not just methylethyl? why is there a prefix di-? also why is it dimethylethyl and not diethylmethyl?
Thank You
By Robert WhiteFebruary 8, 2018
Hello, at 22:00 when you try to synthesize bromopropane could you use TsCl with Pyridine to make the OH into a good LG then add NaBr to cause a SN2 reaction to form the bromopropane?  
Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.