Mary Pyo

Mary Pyo

Mixed Numbers and Improper Fractions

Slide Duration:

Table of Contents

Section 1: Algebra and Decimals
Expressions and Variables

5m 57s

Intro
0:00
Vocabulary
0:06
Variable
0:09
Expression
0:48
Numerical Expression
1:08
Algebraic Expression
1:35
Word Expression
2:04
Extra Example 1: Evaluate the Expression
2:27
Extra Example 2: Evaluate the Expression
3:16
Extra Example 3: Evaluate the Expression
4:04
Extra Example 4: Evaluate the Expression
4:59
Exponents

5m 34s

Intro
0:00
What Exponents Mean
0:07
Example: Ten Squared
0:08
Extra Example 1: Exponents
0:50
Extra Example 2: Write in Exponent Form
1:58
Extra Example 3: Using Exponent and Base
2:37
Extra Example 4: Write the Equal Factors
4:26
Order of Operations

8m 40s

Intro
0:00
Please Excuse My Dear Aunt Sally
0:07
Step 1: Parenthesis
1:16
Step 2: Exponent
1:25
Step 3: Multiply and Divide
1:30
Step 4: Add and Subtract
2:00
Example: Please Excuse My Dear Aunt Sally
2:26
Extra Example 1: Evaluating Expression
3:37
Extra Example 2: Evaluating Expression
4:59
Extra Example 3: Evaluating Expression
5:34
Extra Example 4: Evaluating Expression
6:25
Comparing and Ordering Decimals

13m 37s

Intro
0:00
Place Value
0:13
Examples: 1,234,567.89
0:19
Which is the Larger Value?
1:33
Which is Larger: 10.5 or 100.5
1:46
Which is Larger: 1.01 or 1.10
2:24
Which is Larger: 44.40 or 44.4
4:20
Which is Larger: 18.6 or 16.8
5:18
Extra Example 1: Order from Least to Greatest
5:55
Extra Example 2: Order from Least to Greatest
7:56
Extra Example 3: Order from Least to Greatest
9:16
Extra Example 4: Order from Least to Greatest
10:42
Rounding Decimals

12m 31s

Intro
0:00
Decimal Place Value
0:06
Example: 12,3454.6789
0:07
How to Round Decimals
1:17
Example: Rounding 1,234.567
1:18
Extra Example 1: Rounding Decimals
3:47
Extra Example 2: Rounding Decimals
6:10
Extra Example 3: Rounding Decimals
7:45
Extra Example 4: Rounding Decimals
9:56
Adding and Subtracting Decimals

11m 30s

Intro
0:00
When Adding and Subtracting
0:06
Align the Decimal Point First
0:12
Add or Subtract the Digits
0:47
Place the Decimal Point in the Same Place
0:55
Check by Estimating
1:09
Examples
1:28
Add: 3.45 + 7 + 0.835
1:30
Find the Difference: 351.4 - 65.25
3:34
Extra Example 1: Adding Decimals
5:32
Extra Example 2: How Much Money?
6:09
Extra Example 3: Subtracting Decimals
7:20
Extra Example 4: Adding Decimals
9:32
Multiplying Decimals

10m 30s

Intro
0:00
Multiply the Decimals
0:05
Methods for Multiplying Decimals
0:06
Example: 1.1 x 6
0:38
Extra Example 1: Multiplying Decimals
1:51
Extra Example 2: Work Money
2:49
Extra Example 3: Multiplying Decimals
5:45
Extra Example 4: Multiplying Decimals
7:46
Dividing Decimals

17m 49s

Intro
0:00
When Dividing Decimals
0:06
Methods for Dividing Decimals
0:07
Divisor and Dividend
0:37
Example: 0.2 Divided by 10
1:35
Extra Example 1 : Dividing Decimals
5:24
Extra Example 2: How Much Does Each CD Cost?
8:22
Extra Example 3: Dividing Decimals
10:59
Extra Example 4: Dividing Decimals
12:08
Section 2: Number Relationships and Fractions
Prime Factorization

7m

Intro
0:00
Terms to Review
0:07
Prime vs. Composite
0:12
Factor
0:54
Product
1:15
Factor Tree
1:39
Example: Prime Factorization
2:01
Example: Prime Factorization
2:43
Extra Example 1: Prime Factorization
4:08
Extra Example 2: Prime Factorization
5:05
Extra Example 3: Prime Factorization
5:33
Extra Example 4: Prime Factorization
6:13
Greatest Common Factor

12m 47s

Intro
0:00
Terms to Review
0:05
Factor
0:07
Example: Factor of 20
0:18
Two Methods
0:59
Greatest Common Factor
1:00
Method 1: GCF of 15 and 30
1:37
Method 2: GCF of 15 and 30
2:58
Extra Example 1: Find the GCF of 6 and 18
5:16
Extra Example 2: Find the GCF of 36 and 27
7:43
Extra Example 3: Find the GCF of 6 and 18
9:18
Extra Example 4: Find the GCF of 54 and 36
10:30
Fraction Concepts and Simplest Form

10m 3s

Intro
0:00
Fraction Concept
0:10
Example: Birthday Cake
0:28
Example: Chocolate Bar
2:10
Simples Form
3:38
Example: Simplifying 4 out of 8
3:46
Extra Example 1: Graphically Show 4 out of 10
4:41
Extra Example 2: Finding Fraction Shown by Illustration
5:10
Extra Example 3: Simplest Form of 5 over 25
7:02
Extra Example 4: Simplest Form of 14 over 49
8:30
Least Common Multiple

14m 16s

Intro
0:00
Term to Review
0:06
Multiple
0:07
Example: Multiples of 4
0:15
Two Methods
0:41
Least Common Multiples
0:44
Method 1: LCM of 6 and 10
1:09
Method 2: LCM of 6 and 10
2:56
Extra Example 1: LCM of 12 and 15
5:09
Extra Example 2: LCM of 16 and 20
7:36
Extra Example 3 : LCM of 15 and 25
10:00
Extra Example 4 : LCM of 12 and 18
11:27
Comparing and Ordering Fractions

13m 10s

Intro
0:00
Terms Review
0:14
Greater Than
0:16
Less Than
0:40
Compare the Fractions
1:00
Example: Comparing 2/4 and 3/4
1:08
Example: Comparing 5/8 and 2/5
2:04
Extra Example 1: Compare the Fractions
3:28
Extra Example 2: Compare the Fractions
6:06
Extra Example 3: Compare the Fractions
8:01
Extra Example 4: Least to Greatest
9:37
Mixed Numbers and Improper Fractions

12m 49s

Intro
0:00
Fractions
0:10
Mixed Number
0:21
Proper Fraction
0:47
Improper Fraction
1:30
Switching Between
2:47
Mixed Number to Improper Fraction
2:53
Improper Fraction to Mixed Number
4:41
Examples: Switching Fractions
6:37
Extra Example 1: Mixed Number to Improper Fraction
8:57
Extra Example 2: Improper Fraction to Mixed Number
9:37
Extra Example 3: Improper Fraction to Mixed Number
10:21
Extra Example 4: Mixed Number to Improper Fraction
11:31
Connecting Decimals and Fractions

15m 1s

Intro
0:00
Examples: Decimals and Fractions
0:06
More Examples: Decimals and Fractions
2:48
Extra Example 1: Converting Decimal to Fraction
6:55
Extra Example 2: Converting Fraction to Decimal
8:45
Extra Example 3: Converting Decimal to Fraction
10:28
Extra Example 4: Converting Fraction to Decimal
11:42
Section 3: Fractions and Their Operations
Adding and Subtracting Fractions with Same Denominators

5m 17s

Intro
0:00
Same Denominator
0:11
Numerator and Denominator
0:18
Example: 2/6 + 5/6
0:41
Extra Example 1: Add or Subtract the Fractions
2:02
Extra Example 2: Add or Subtract the Fractions
2:45
Extra Example 3: Add or Subtract the Fractions
3:17
Extra Example 4: Add or Subtract the Fractions
4:05
Adding and Subtracting Fractions with Different Denominators

23m 8s

Intro
0:00
Least Common Multiple
0:12
LCM of 6 and 4
0:31
From LCM to LCD
2:25
Example: Adding 1/6 with 3/4
3:12
Extra Example 1: Add or Subtract
6:23
Extra Example 2: Add or Subtract
9:49
Extra Example 3: Add or Subtract
14:54
Extra Example 4: Add or Subtract
18:14
Adding and Subtracting Mixed Numbers

19m 44s

Intro
0:00
Example
0:05
Adding Mixed Numbers
0:17
Extra Example 1: Adding Mixed Numbers
1:57
Extra Example 2: Subtracting Mixed Numbers
8:13
Extra Example 3: Adding Mixed Numbers
12:01
Extra Example 4: Subtracting Mixed Numbers
14:54
Multiplying Fractions and Mixed Numbers

21m 32s

Intro
0:00
Multiplying Fractions
0:07
Step 1: Change Mixed Numbers to Improper Fractions
0:08
Step2: Multiply the Numerators Together
0:56
Step3: Multiply the Denominators Together
1:03
Extra Example 1: Multiplying Fractions
1:37
Extra Example 2: Multiplying Fractions
6:39
Extra Example 3: Multiplying Fractions
10:20
Extra Example 4: Multiplying Fractions
13:47
Dividing Fractions and Mixed Numbers

18m

Intro
0:00
Dividing Fractions
0:09
Step 1: Change Mixed Numbers to Improper Fractions
0:15
Step 2: Flip the Second Fraction
0:27
Step 3: Multiply the Fractions
0:52
Extra Example 1: Dividing Fractions
1:23
Extra Example 2: Dividing Fractions
5:06
Extra Example 3: Dividing Fractions
9:34
Extra Example 4: Dividing Fractions
12:06
Distributive Property

11m 5s

Intro
0:00
Distributive Property
0:06
Methods of Distributive Property
0:07
Example: a(b)
0:35
Example: a(b+c)
0:49
Example: a(b+c+d)
1:22
Extra Example 1: Using Distributive Property
1:56
Extra Example 2: Using Distributive Property
4:36
Extra Example 3: Using Distributive Property
6:39
Extra Example 4: Using Distributive Property
8:19
Units of Measure

16m 36s

Intro
0:00
Length
0:05
Feet, Inches, Yard, and Mile
0:20
Millimeters, Centimeters, and Meters
0:43
Mass
2:57
Pounds, Ounces, and Tons
3:03
Grams and Kilograms
3:38
Liquid
4:11
Gallons, Quarts, Pints, and Cups
4:14
Extra Example 1: Converting Units
7:02
Extra Example 2: Converting Units
9:31
Extra Example 3: Converting Units
12:21
Extra Example 4: Converting Units
14:05
Section 4: Positive and Negative Numbers
Integers and the Number Line

13m 24s

Intro
0:00
What are Integers
0:06
Integers are all Whole Numbers and Their Opposites
0:09
Absolute Value
2:35
Extra Example 1: Compare the Integers
4:36
Extra Example 2: Writing Integers
9:24
Extra Example 3: Opposite Integer
10:38
Extra Example 4: Absolute Value
11:27
Adding Integers

16m 5s

Intro
0:00
Using a Number Line
0:04
Example: 4 + (-2)
0:14
Example: 5 + (-8)
1:50
How to Add Integers
3:00
Opposites Add to Zero
3:10
Adding Same Sign Numbers
3:37
Adding Opposite Signs Numbers
4:44
Extra Example 1: Add the Integers
8:21
Extra Example 2: Find the Sum
10:33
Extra Example 3: Find the Value
11:37
Extra Example 4: Add the Integers
13:10
Subtracting Integers

15m 25s

Intro
0:00
How to Subtract Integers
0:06
Two-dash Rule
0:16
Example: 3 - 5
0:44
Example: 3 - (-5)
1:12
Example: -3 - 5
1:39
Extra Example 1: Rewrite Subtraction to Addition
4:43
Extra Example 2: Find the Difference
7:59
Extra Example 3: Find the Difference
9:08
Extra Example 4: Evaluate
10:38
Multiplying Integers

7m 33s

Intro
0:00
When Multiplying Integers
0:05
If One Number is Negative
0:06
If Both Numbers are Negative
0:18
Examples: Multiplying Integers
0:53
Extra Example 1: Multiplying Integers
1:27
Extra Example 2: Multiplying Integers
2:43
Extra Example 3: Multiplying Integers
3:13
Extra Example 4: Multiplying Integers
3:51
Dividing Integers

6m 42s

Intro
0:00
When Dividing Integers
0:05
Rules for Dividing Integers
0:41
Extra Example 1: Dividing Integers
1:01
Extra Example 2: Dividing Integers
1:51
Extra Example 3: Dividing Integers
2:21
Extra Example 4: Dividing Integers
3:18
Integers and Order of Operations

11m 9s

Intro
0:00
Combining Operations
0:21
Solve Using the Order of Operations
0:22
Extra Example 1: Evaluate
1:18
Extra Example 2: Evaluate
4:20
Extra Example 3: Evaluate
6:33
Extra Example 4: Evaluate
8:13
Section 5: Solving Equations
Writing Expressions

9m 15s

Intro
0:00
Operation as Words
0:05
Operation as Words
0:06
Extra Example 1: Write Each as an Expression
2:09
Extra Example 2: Write Each as an Expression
4:27
Extra Example 3: Write Each Expression Using Words
6:45
Writing Equations

18m 3s

Intro
0:00
Equation
0:05
Definition of Equation
0:06
Examples of Equation
0:58
Operations as Words
1:39
Operations as Words
1:40
Extra Example 1: Write Each as an Equation
3:07
Extra Example 2: Write Each as an Equation
6:19
Extra Example 3: Write Each as an Equation
10:08
Extra Example 4: Determine if the Equation is True or False
13:38
Solving Addition and Subtraction Equations

24m 53s

Intro
0:00
Solving Equations
0:08
inverse Operation of Addition and Subtraction
0:09
Extra Example 1: Solve Each Equation Using Mental Math
4:15
Extra Example 2: Use Inverse Operations to Solve Each Equation
5:44
Extra Example 3: Solve Each Equation
14:51
Extra Example 4: Translate Each to an Equation and Solve
19:57
Solving Multiplication Equation

19m 46s

Intro
0:00
Multiplication Equations
0:08
Inverse Operation of Multiplication
0:09
Extra Example 1: Use Mental Math to Solve Each Equation
3:54
Extra Example 2: Use Inverse Operations to Solve Each Equation
5:55
Extra Example 3: Is -2 a Solution of Each Equation?
12:48
Extra Example 4: Solve Each Equation
15:42
Solving Division Equation

17m 58s

Intro
0:00
Division Equations
0:05
Inverse Operation of Division
0:06
Extra Example 1: Use Mental Math to Solve Each Equation
0:39
Extra Example 2: Use Inverse Operations to Solve Each Equation
2:14
Extra Example 3: Is -6 a Solution of Each Equation?
9:53
Extra Example 4: Solve Each Equation
11:50
Section 6: Ratios and Proportions
Ratio

40m 21s

Intro
0:00
Ratio
0:05
Definition of Ratio
0:06
Examples of Ratio
0:18
Rate
2:19
Definition of Rate
2:20
Unit Rate
3:38
Example: $10 / 20 pieces
5:05
Converting Rates
6:46
Example: Converting Rates
6:47
Extra Example 1: Write in Simplest Form
16:22
Extra Example 2: Find the Ratio
20:53
Extra Example 3: Find the Unit Rate
22:56
Extra Example 4: Convert the Unit
26:34
Solving Proportions

17m 22s

Intro
0:00
Proportions
0:05
An Equality of Two Ratios
0:06
Cross Products
1:00
Extra Example 1: Find Two Equivalent Ratios for Each
3:21
Extra Example 2: Use Mental Math to Solve the Proportion
5:52
Extra Example 3: Tell Whether the Two Ratios Form a Proportion
8:21
Extra Example 4: Solve the Proportion
13:26
Writing Proportions

22m 1s

Intro
0:00
Writing Proportions
0:08
Introduction to Writing Proportions and Example
0:10
Extra Example 1: Write a Proportion and Solve
5:54
Extra Example 2: Write a Proportion and Solve
11:19
Extra Example 3: Write a Proportion for Word Problem
17:29
Similar Polygons

16m 31s

Intro
0:00
Similar Polygons
0:05
Definition of Similar Polygons
0:06
Corresponding Sides are Proportional
2:14
Extra Example 1: Write a Proportion and Find the Value of Similar Triangles
4:26
Extra Example 2: Write a Proportional to Find the Value of x
7:04
Extra Example 3: Write a Proportion for the Similar Polygons and Solve
9:04
Extra Example 4: Word Problem and Similar Polygons
11:03
Scale Drawings

13m 43s

Intro
0:00
Scale Drawing
0:05
Definition of a Scale Drawing
0:06
Example: Scale Drawings
1:00
Extra Example 1: Scale Drawing
4:50
Extra Example 2: Scale Drawing
7:02
Extra Example 3: Scale Drawing
9:34
Probability

11m 51s

Intro
0:00
Probability
0:05
Introduction to Probability
0:06
Example: Probability
1:22
Extra Example 1: What is the Probability of Landing on Orange?
3:26
Extra Example 2: What is the Probability of Rolling a 5?
5:02
Extra Example 3: What is the Probability that the Marble will be Red?
7:40
Extra Example 4: What is the Probability that the Student will be a Girl?
9:43
Section 7: Percents
Percents, Fractions, and Decimals

35m 5s

Intro
0:00
Percents
0:06
Changing Percent to a Fraction
0:07
Changing Percent to a Decimal
1:54
Fractions
4:17
Changing Fraction to Decimal
4:18
Changing Fraction to Percent
7:50
Decimals
10:10
Changing Decimal to Fraction
10:11
Changing Decimal to Percent
12:07
Extra Example 1: Write Each Percent as a Fraction in Simplest Form
13:29
Extra Example 2: Write Each as a Decimal
17:09
Extra Example 3: Write Each Fraction as a Percent
22:45
Extra Example 4: Complete the Table
29:17
Finding a Percent of a Number

28m 18s

Intro
0:00
Percent of a Number
0:06
Translate Sentence into an Equation
0:07
Example: 30% of 100 is What Number?
1:05
Extra Example 1: Finding a Percent of a Number
7:12
Extra Example 2: Finding a Percent of a Number
15:56
Extra Example 3: Finding a Percent of a Number
19:14
Extra Example 4: Finding a Percent of a Number
24:26
Solving Percent Problems

32m 31s

Intro
0:00
Solving Percent Problems
0:06
Translate the Sentence into an Equation
0:07
Extra Example 1: Solving Percent Problems
0:56
Extra Example 2: Solving Percent Problems
14:49
Extra Example 3: Solving Percent Problems
23:44
Simple Interest

27m 9s

Intro
0:00
Simple Interest
0:05
Principal
0:06
Interest & Interest Rate
0:41
Simple Interest
1:43
Simple Interest Formula
2:23
Simple Interest Formula: I = prt
2:24
Extra Example 1: Finding Simple Interest
3:53
Extra Example 2: Finding Simple Interest
8:08
Extra Example 3: Finding Simple Interest
12:02
Extra Example 4: Finding Simple Interest
17:46
Discount and Sales Tax

17m 15s

Intro
0:00
Discount
0:19
Discount
0:20
Sale Price
1:22
Sales Tax
2:24
Sales Tax
2:25
Total Due
2:59
Extra Example 1: Finding the Discount
3:43
Extra Example 2: Finding the Sale Price
6:28
Extra Example 3: Finding the Sale Tax
11:14
Extra Example 4: Finding the Total Due
14:08
Section 8: Geometry in a Plane
Intersecting Lines and Angle Measures

24m 17s

Intro
0:00
Intersecting Lines
0:07
Properties of Lines
0:08
When Two Lines Cross Each Other
1:55
Angles
2:56
Properties of Angles: Sides, Vertex, and Measure
2:57
Classifying Angles
7:18
Acute Angle
7:19
Right Angle
7:54
Obtuse Angle
8:03
Angle Relationships
8:56
Vertical Angles
8:57
Adjacent Angles
10:38
Complementary Angles
11:52
Supplementary Angles
12:54
Extra Example 1: Lines
16:00
Extra Example 2: Angles
18:22
Extra Example 3: Angle Relationships
20:05
Extra Example 4: Name the Measure of Angles
21:11
Angles of a Triangle

13m 35s

Intro
0:00
Angles of a Triangle
0:05
All Triangles Have Three Angles
0:06
Measure of Angles
2:16
Extra Example 1: Find the Missing Angle Measure
5:39
Extra Example 2: Angles of a Triangle
7:18
Extra Example 3: Angles of a Triangle
9:24
Classifying Triangles

15m 10s

Intro
0:00
Types of Triangles by Angles
0:05
Acute Triangle
0:06
Right Triangle
1:14
Obtuse Triangle
2:22
Classifying Triangles by Sides
4:18
Equilateral Triangle
4:20
Isosceles Triangle
5:21
Scalene Triangle
5:53
Extra Example 1: Classify the Triangle by Its Angles and Sides
6:34
Extra Example 2: Sketch the Figures
8:10
Extra Example 3: Classify the Triangle by Its Angles and Sides
9:55
Extra Example 4: Classify the Triangle by Its Angles and Sides
11:35
Quadrilaterals

17m 41s

Intro
0:00
Quadrilaterals
0:05
Definition of Quadrilaterals
0:06
Parallelogram
0:45
Rectangle
2:28
Rhombus
3:13
Square
3:53
Trapezoid
4:38
Parallelograms
5:33
Parallelogram, Rectangle, Rhombus, Trapezoid, and Square
5:35
Extra Example 1: Give the Most Exact Name for the Figure
11:37
Extra Example 2: Fill in the Blanks
13:31
Extra Example 3: Complete Each Statement with Always, Sometimes, or Never
14:37
Area of a Parallelogram

12m 44s

Intro
0:00
Area
0:06
Definition of Area
0:07
Area of a Parallelogram
2:00
Area of a Parallelogram
2:01
Extra Example 1: Find the Area of the Rectangle
4:30
Extra Example 2: Find the Area of the Parallelogram
5:29
Extra Example 3: Find the Area of the Parallelogram
7:22
Extra Example 4: Find the Area of the Shaded Region
8:55
Area of a Triangle

11m 29s

Intro
0:00
Area of a Triangle
0:05
Area of a Triangle: Equation and Example
0:06
Extra Example 1: Find the Area of the Triangles
1:31
Extra Example 2: Find the Area of the Figure
4:09
Extra Example 3: Find the Area of the Shaded Region
7:45
Circumference of a Circle

15m 4s

Intro
0:00
Segments in Circles
0:05
Radius
0:06
Diameter
1:08
Chord
1:49
Circumference
2:53
Circumference of a Circle
2:54
Extra Example 1: Name the Given Parts of the Circle
6:26
Extra Example 2: Find the Circumference of the Circle
7:54
Extra Example 3: Find the Circumference of Each Circle with the Given Measure
11:04
Area of a Circle

14m 43s

Intro
0:00
Area of a Circle
0:05
Area of a Circle: Equation and Example
0:06
Extra Example 1: Find the Area of the Circle
2:17
Extra Example 2: Find the Area of the Circle
5:47
Extra Example 3: Find the Area of the Shaded Region
9:24
Section 11: Geometry in Space
Prisms and Cylinders

21m 49s

Intro
0:00
Prisms
0:06
Polyhedron
0:07
Regular Prism, Bases, and Lateral Faces
1:44
Cylinders
9:37
Bases and Altitude
9:38
Extra Example 1: Classify Each Prism by the Shape of Its Bases
11:16
Extra Example 2: Name Two Different Edges, Faces, and Vertices of the Prism
15:44
Extra Example 3: Name the Solid of Each Object
17:58
Extra Example 4: Write True or False for Each Statement
19:47
Volume of a Rectangular Prism

8m 59s

Intro
0:00
Volume of a Rectangular Prism
0:06
Volume of a Rectangular Prism: Formula
0:07
Volume of a Rectangular Prism: Example
1:46
Extra Example 1: Find the Volume of the Rectangular Prism
3:39
Extra Example 2: Find the Volume of the Cube
5:00
Extra Example 3: Find the Volume of the Solid
5:56
Volume of a Triangular Prism

16m 15s

Intro
0:00
Volume of a Triangular Prism
0:06
Volume of a Triangular Prism: Formula
0:07
Extra Example 1: Find the Volume of the Triangular Prism
2:42
Extra Example 2: Find the Volume of the Triangular Prism
7:21
Extra Example 3: Find the Volume of the Solid
10:38
Volume of a Cylinder

15m 55s

Intro
0:00
Volume of a Cylinder
0:05
Volume of a Cylinder: Formula
0:06
Extra Example 1: Find the Volume of the Cylinder
1:52
Extra Example 2: Find the Volume of the Cylinder
7:38
Extra Example 3: Find the Volume of the Cylinder
11:25
Surface Area of a Prism

23m 28s

Intro
0:00
Surface Area of a Prism
0:06
Surface Area of a Prism
0:07
Lateral Area of a Prism
2:12
Lateral Area of a Prism
2:13
Extra Example 1: Find the Surface Area of the Rectangular Prism
7:08
Extra Example 2: Find the Lateral Area and the Surface Area of the Cube
12:05
Extra Example 3: Find the Surface Area of the Triangular Prism
17:13
Surface Area of a Cylinder

27m 41s

Intro
0:00
Surface Area of a Cylinder
0:06
Introduction to Surface Area of a Cylinder
0:07
Surface Area of a Cylinder
1:33
Formula
1:34
Extra Example 1: Find the Surface Area of the Cylinder
5:51
Extra Example 2: Find the Surface Area of the Cylinder
13:51
Extra Example 3: Find the Surface Area of the Cylinder
20:57
Section 10: Data Analysis and Statistics
Measures of Central Tendency

24m 32s

Intro
0:00
Measures of Central Tendency
0:06
Mean
1:17
Median
2:42
Mode
5:41
Extra Example 1: Find the Mean, Median, and Mode for the Following Set of Data
6:24
Extra Example 2: Find the Mean, Median, and Mode for the Following Set of Data
11:14
Extra Example 3: Find the Mean, Median, and Mode for the Following Set of Data
15:13
Extra Example 4: Find the Three Measures of the Central Tendency
19:12
Histograms

19m 43s

Intro
0:00
Histograms
0:05
Definition and Example
0:06
Extra Example 1: Draw a Histogram for the Frequency Table
6:14
Extra Example 2: Create a Histogram of the Data
8:48
Extra Example 3: Create a Histogram of the Following Test Scores
14:17
Box-and-Whisker Plot

17m 54s

Intro
0:00
Box-and-Whisker Plot
0:05
Median, Lower & Upper Quartile, Lower & Upper Extreme
0:06
Extra Example 1: Name the Median, Lower & Upper Quartile, Lower & Upper Extreme
6:04
Extra Example 2: Draw a Box-and-Whisker Plot Given the Information
7:35
Extra Example 3: Find the Median, Lower & Upper Quartile, Lower & Upper Extreme
9:31
Extra Example 4: Draw a Box-and-Whiskers Plots for the Set of Data
12:50
Stem-and-Leaf Plots

17m 42s

Intro
0:00
Stem-and-Leaf Plots
0:05
Stem-and-Leaf Plots
0:06
Extra Example 1: Use the Data to Create a Stem-and-Leaf Plot
2:28
Extra Example 2: List All the Numbers in the Stem-and-Leaf Plot in Order From Least to Greatest
7:02
Extra Example 3: Create a Stem-and-Leaf Plot of the Data & Find the Median and the Mode.
8:59
The Coordinate Plane

19m 59s

Intro
0:00
The Coordinate System
0:05
The Coordinate Plane
0:06
Quadrants, Origin, and Ordered Pair
0:50
The Coordinate Plane
7:02
Write the Coordinates for Points A, B, and C
7:03
Extra Example 1: Graph Each Point on the Coordinate Plane
9:03
Extra Example 2: Write the Coordinate and Quadrant for Each Point
11:05
Extra Example 3: Name Two Points From Each of the Four Quadrants
13:13
Extra Example 4: Graph Each Point on the Same Coordinate Plane
17:47
Section 11: Probability and Discrete Mathematics
Organizing Possible Outcomes

15m 35s

Intro
0:00
Compound Events
0:08
Compound Events
0:09
Fundamental Counting Principle
3:35
Extra Example 1: Create a List of All the Possible Outcomes
4:47
Extra Example 2: Create a Tree Diagram For All the Possible Outcomes
6:34
Extra Example 3: Create a Tree Diagram For All the Possible Outcomes
10:00
Extra Example 4: Fundamental Counting Principle
12:41
Independent and Dependent Events

35m 19s

Intro
0:00
Independent Events
0:11
Definition
0:12
Example 1: Independent Event
1:45
Example 2: Two Independent Events
4:48
Dependent Events
9:09
Definition
9:10
Example: Dependent Events
10:10
Extra Example 1: Determine If the Two Events are Independent or Dependent Events
13:38
Extra Example 2: Find the Probability of Each Pair of Events
18:11
Extra Example 3: Use the Spinner to Find Each Probability
21:42
Extra Example 4: Find the Probability of Each Pair of Events
25:49
Disjoint Events

12m 13s

Intro
0:00
Disjoint Events
0:06
Definition and Example
0:07
Extra Example 1: Disjoint & Not Disjoint Events
3:08
Extra Example 2: Disjoint & Not Disjoint Events
4:23
Extra Example 3: Independent, Dependent, and Disjoint Events
6:30
Probability of an Event Not Occurring

20m 5s

Intro
0:00
Event Not Occurring
0:07
Formula and Example
0:08
Extra Example 1: Use the Spinner to Find Each Probability
7:24
Extra Example 2: Probability of Event Not Occurring
11:21
Extra Example 3: Probability of Event Not Occurring
15:51
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Basic Math
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Practice Questions

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (12)

0 answers

Post by Jason Sun on May 15, 2020

Thanks for the examples

0 answers

Post by Zoe Chen on April 24, 2020

. com

2 answers

Last reply by: Jorge Abalo
Mon Dec 9, 2013 5:10 PM

Post by Wasay Ahmad on January 30, 2013

i have a question Mary what if in the part where you make the improper fraction a mixed number what if it doesn't have a leftover? ( 28/4 = 7 but there is no leftover)

0 answers

Post by Wasay Ahmad on January 15, 2013

thanks you so much i used to be very bad at fractions but now i know them really well this helped me with my homework thank you so much Mary also i hope he/she isnt skipping a grade

0 answers

Post by patrick elsworth on October 24, 2012

what a remarkable website is he/she really skipping a grade

2 answers

Last reply by: Joseph Zheng
Wed Apr 29, 2020 10:06 AM

Post by Ramez Hajelsawi on October 1, 2012

I am skipping a grade with this education!!!!!!!! :)

0 answers

Post by Valdo Ribeiro on December 9, 2011

Outstanding!

0 answers

Post by Michelle Giacalone on June 7, 2011

Good: These videos are fantastic for helping me review my maths.

Bad: Now I'm craving pieces of candy and slices of cake!

Mixed Numbers and Improper Fractions

Related Links

  • Mixed Number: A fraction with a whole number (e.g. 1½)
  • Proper Fraction: A fraction where the numerator (top number) is smaller than the denominator (bottom number), and the fraction is less than 1 (e.g. ¾)
  • Improper Fraction: A fraction where the numerator is bigger than the bottom number, and the fraction is greater than 1 (e.g. 4/3)

Mixed Numbers and Improper Fractions

Mixed Number to Improper Fraction: 7[3/4]
  • 4 ×7 + 3 = 28 + 3 = 31
[(31)/(4)]
Mixed Number to Improper Fraction: 12[5/6]
  • 6 ×12 + 5 = 72 + 5 = 77
[(77)/(6)]
Improper Fraction to Mixed Number: [8/3]
2[2/3]
Improper Fraction to Mixed Number: [16/5]
3[(1)/(5)]
Improper Fraction to Mixed Number: [47/6]
7[(5)/(6)]
Improper Fraction to Mixed Number: [35/6]
5[(5)/(6)]
Improper Fraction to Mixed Number: [43/5]
8[(3)/(5)]
Mixed Number to Improper Fraction: 8[3/4]
  • 4 ×8 + 3 = 32 + 3 = 35
[(35)/(4)]
Mixed Number to Improper Fraction: 12[8/9]
  • 9 ×12 + 8 = 108 + 8 = 116
[(116)/(9)]
Mixed Number to Improper Fraction: 6[4/5]
  • 6×5 + 4 = 30 + 4 = 34
[(34)/(5)]

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

Mixed Numbers and Improper Fractions

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Fractions 0:10
    • Mixed Number
    • Proper Fraction
    • Improper Fraction
  • Switching Between 2:47
    • Mixed Number to Improper Fraction
    • Improper Fraction to Mixed Number
  • Examples: Switching Fractions 6:37
  • Extra Example 1: Mixed Number to Improper Fraction 8:57
  • Extra Example 2: Improper Fraction to Mixed Number 9:37
  • Extra Example 3: Improper Fraction to Mixed Number 10:21
  • Extra Example 4: Mixed Number to Improper Fraction 11:31

Transcription: Mixed Numbers and Improper Fractions

Welcome back to Educator.com.0000

We are going over mixed numbers and improper fractions and how to switch between the two.0002

If we look at fractions, there is three different kinds.0012

There is the mixed number, proper fractions, and improper fractions.0015

Mixed number is a fraction with a whole number.0021

If I have 1 and 1/2, the number in the front, 1, is a whole number and then 1/2 is a fraction.0026

The whole number with a fraction is called a mixed number.0035

Another example would be 5 and 3/4; that is called a mixed number.0040

A proper fraction is a fraction where the top number is smaller than the bottom number.0047

3/4 with no whole number, just 3/4, that would be a proper fraction.0058

Keep in mind that proper fractions, because the top number,0067

the numerator, is smaller than the denominator, these fractions are smaller than 10069

because if you ate 3 out of 4 pieces, then you ate less than the whole thing.0077

A proper fraction would be a fraction that is smaller than 1.0083

Improper fraction would be the opposite.0090

It is when the top number, the numerator, is bigger than the denominator.0092

Like 4/3, this is an improper fraction; again there is no whole number.0100

If there was a whole number, it would be called a mixed number.0106

An improper fraction, the top number is bigger than the bottom number.0109

If you ate 4 pieces out of 3, then you actually ate more than 1.0115

You ate 1; and you ate a little more.0122

Improper fractions are actually bigger than 1.0126

Mixed number we know is bigger than 1 because you have a whole number and you have a fraction.0131

And improper fractions are bigger than 1.0137

Since proper fractions are smaller than 1, we can't do anything to that one.0142

That one, we can't change; that one has to stay the way it is.0147

But since mixed number and improper fractions are both bigger than 1,0151

we can actually change them from mixed number to improper fraction and improper fraction to mixed number.0157

For you to be able to switch between, let's start with this one--mixed number to improper fraction.0170

If I have a mixed number, 2 and 1/2, again that is a mixed number0178

because you have a whole number in the front and you have...this is like a proper fraction.0183

It is a whole number with a proper fraction.0188

Together it is called a mixed number.0190

If I want to switch a mixed number to make it look like an improper fraction,0194

the first thing I am going to do is take this number on the bottom which is the denominator.0202

Multiply it to the whole number; it would be 2 times 2 which is 4.0208

Then you are going to add the top number--plus 1.0218

Again take the bottom number, 2, multiply it to the whole number, and add it to the top number.0223

It is 2 times 2 which is 4; plus 1 is 5.0229

That number is going to be the top number of your improper fraction.0237

It is going to be the numerator; 5 over... the denominator stays the same.0242

The denominator of the improper fraction is going to be the same as the denominator of your mixed number.0252

That does not change; 5/2.0257

Again the top number, the numerator, is bigger than the denominator.0260

We have no whole number.0265

From a mixed number, we just change that to an improper fraction.0268

Again denominator times the whole number; then add the top number.0274

If you are going to go the other way, you are going to go from an improper fraction0283

and change it to a mixed number, say I have 10/3.0286

We know this is an improper fraction because the top number, the numerator, is bigger than the denominator.0294

In this case, I want to see how many times the bottom number can fit into the top number.0302

How many times can the bottom number go into the top number?0310

I know 3 times 3 is 9.0315

That means the 3 fits into 10 three times because 10 is bigger than 9.0319

I am going to write that number as my whole number because mixed number again has a whole number.0328

You are figuring out the biggest multiple of 3 that fits into 10.0335

Again 3 goes into 10 three times which makes it a 9.0343

How many do I have left over then?0349

If 3 times 3 is 9, but this number is 10, I have 1 left over.0351

My leftover is going to be the top number of the fraction.0358

Again my denominator has to stay the same; the denominator here is 3.0365

The denominator here is going to stay 3.0370

Again to change from an improper fraction to a mixed number,0374

you are going to see how many times the bottom number will fit into 10.0378

It fits in there three times with 1 left over.0385

Then denominators both stay the same.0389

Here are some examples.0398

This is an improper fraction because again the top number is bigger than the bottom number.0401

We know this is bigger than 1.0409

Since this is an improper fraction, I want to change it to a mixed number.0413

I don't have to, but if I want to, I can switch it over.0420

In order to switch it, I see how many times the bottom number will fit into the top number.0424

How many times does 3 fit into 5?0430

3 times 1 is 3; 3 times 2 is 6; but 6 is too big.0434

Only one time; that becomes my whole number.0442

If 3 fits into 5 one time, how many do I have left over?0448

3 times 1 is 3; I have 5 here; my leftover is 2.0453

What goes down here as my denominator?--the same denominator.0461

From improper fraction, I can change it to this mixed number.0468

These mean the same thing.0472

This fraction is the same fraction as this one right here.0474

You are just writing it in different form.0477

This example here, this fraction is... can you guess?0481

Good, it is a mixed number because we have a whole number with a proper fraction.0486

Here, since this is a mixed number, I can change it to an improper fraction.0494

I take my denominator; I multiply it to my whole number.0501

Then I add it to my numerator.0509

It is 2 times 4 which is 8; plus 1.0513

That is 9 over... my denominator stays the same as a 2.0520

4 and 1/2 is the same thing as 9/2.0529

Here is another example; this right here is a mixed number.0539

We can change it to an improper fraction.0543

You take the 4, the denominator; you are going to multiply it to the 5.0547

Then you are going to add the top.0554

It is 20; plus 3 is 23; it is 23.0556

Then the denominator stays the same; the denominator is 4.0564

5 and 3/4 is the same thing as 23/4.0571

Another example, 6/7; the top number is smaller than the bottom number.0578

If I look at this and ask myself how many times does 7 go into 6?0589

It doesn't go into it at all.0596

6 is smaller than 7; 7 doesn't fit into 6.0597

This fraction is a proper fraction; this is a proper fraction.0602

I can't switch it over to the other types of fractions.0607

I can't change this to a mixed number.0610

I can't change it to an improper fraction.0612

This fraction is smaller than 1; it is called the proper fraction.0614

This fraction here, the top number is bigger than the bottom number.0624

This is an improper fraction; therefore we can change it to a mixed number.0629

Again I ask myself how many times does 8 fit into 19?0636

8 times 1 is 8; 8 times 2 is 16; 8 times 3 is 24.0644

This number right here is 19; 8 fits into 19 only two times.0652

That becomes a whole number.0662

If 8 times 2 is 16, how many are left over?0665

We do 19; subtract the 16; I have 3 left over.0671

My denominator stays the same as an 8.0677

19/8 is the same thing as 2 and 3/8.0683

This fourth example, this fraction right here is called a mixed number0693

because we have a whole number and we have a proper fraction.0697

Since I have a mixed number, I can switch this over.0703

I can change this to make it look like an improper fraction.0705

The first thing I do here is I take the denominator of 5.0711

I am going to multiply it to the whole number.0715

Then I take that number and add it to the top number, the numerator.0721

I do 5 times 8 which is 40.0726

I am going to add the top number; it is going to be 44.0730

That goes in the numerator of my improper fraction.0737

Then the denominator has to stay the same.0741

The denominator for this fraction is 5; it is going to stay a 5 here.0745

This is an improper fraction because the top number is bigger than the bottom number.0752

8 and 4/5 would be the same thing as 44/5.0760

Thank you for watching Educator.com.0767

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.