For more information, please see full course syllabus of Differential Equations
For more information, please see full course syllabus of Differential Equations
Discussion
Answer Engine
Study Guides
Download Lecture Slides
Table of Contents
Transcription
Related Books
Distinct Roots of Second Order Equations
Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.
- Intro 0:00
- Lesson Overview 0:36
- Linear Means
- Second-Order
- Homogeneous
- Constant Coefficient
- Solve the Characteristic Equation
- Roots r1 and r2
- To Find c1 and c2, Use Initial Conditions
- Example 1 5:46
- Example 2 8:20
- Example 3 16:20
- Example 4 18:26
- Example 5 23:52
Differential Equations Online Course
Transcription: Distinct Roots of Second Order Equations
Hello and welcome back to www.educator.com, I'm Will Murray and we are studying differential equations, today we are going to study second order equations and there are several different cases that arise when you study second order equations.0000
We are going to study something called the characteristic equation which will have 2 roots and there are different things that can happen if those 2 roots are distinct if it is different from each other or if they are the same.0014
Or they turn out to be complex numbers, we are going to have one lecture on each one, today we are going to talk about the case of distinct roots, let us jump right in there.0027
We are going to solve a second order linear homogeneous constant coefficient differential equations, that is a quite a mouthful there, let me explain what each one of those words means.0037
Linear means you have this form Ay″ + By′ + Cy, that is where the linear differential equation is contrast of that would be if you had something like y x y′ would be a non-linear differential equations.0051
Right now we are just studying linear differential equations, second order means that you have y″ appearing, that is what the second order refers to is that you have not just y′ but y″.0070
That is what that word means, homogeneous means that the right hand side is 0, the fact that we have a 0 over here makes it a homogeneous equation, later on we are going to study inhomogeneous equations where we have other functions on the right hand side.0089
We will learn how to solve them when we do not have 0 on the right hand side but that is more complicated issue, we are not going to get to that today.0107
And then constant coefficient means that the a, b, and c are constants, they are just numbers there, that is what constant coefficient means, that is what all those words mean.0116
Linear means Ay″ + By′ + Cy, second order means you have y″ in there, homogeneous means the right hand side is 0 and constant coefficient means the a, b, and c are constants they are not functions of x or t or any other variable.0134
Let us learn how to solve those, it is actually a pretty straight forward algorithm to solve those, what you have to do is to solve this thing called the characteristic equation.0152
And that is basically translating the differential equation and writing this other equation in terms of R, our variables are going to be R and we are going to solve this quadratic equation AR^2 + BR + C = 0.0164
Remember A, B, and C are constants, this is just a quadratic equation, you can solve it using the quadratic formula or completing the square or if you are lucky you can factor it.0184
Whatever techniques you have learned from algebra you can use to solve this quadratic equation.0196
This is really just an algebra problem to solve the quadratic equation, of course as you remember when you solve quadratic equation and algebra you get 2 roots, r1 and r2, and today we are talking about the case where the roots are distinct.0203
Sometimes you have multiple roots or sometimes you have complex roots but we are going to put those off for another lectures, today we are talking about 2 distinct real roots.0231
And then the general solution to the differential equation is C1 e^r1(T) + C2 e^r2(T), basically all of this is prefab except for you put the r1 and r2 in as exponents on the e terms.0241
That is the general solution to the differential equation, it has 2 constants in it, the reason it has 2 constants is because it was a second order equation.0266
The general solution to a first order equation always has one arbitrary constant in it and the general solution to a second order equation always has 2 arbitrary constants.0278
And to find those arbitrary constants it is just like with a first order equations you use initial conditions, before we had one initial condition for a second order equation you need 2 initial conditions.0290
They are usually given in the form of y and 0 equals a certain number and y′ of 0 is equals to a certain number, what you will do is you take those initial conditions, plug goes back into the general solution and you get 2 equations and 2 unknowns.0302
Each initial condition gives you one equation and the 2 unknowns that I'm talking about here are C1 and C2, you get 2 equations for C1 and C2, and then you will solve those to figure out what C1 and C2 are.0320
Then you will plug goes back into the general solution and get a specific solution, that is the way it works, it will make more sense after we work out some examples, let us go ahead and try one out.0336
We are asked to find the general solution to the differential equation y″ of T +2y′ of T -8 y of T is equal 0, this is a second order linear homogeneous constant coefficient differential equation.0345
And remember the way we solve these things is we write down the characteristic equation which is AR^2 + BR + C is equal to 0 and A, B, and, C are just the coefficients from the differential equation.0363
In this case the A is one, the B is 2 and the C is -8, remember to keep track of that negative sign, that is a part of the coefficient, we got r^2 + 2r -8 is equal to 0 and that is just a quadratic.0380
You can solve using quadratic formula if you like, this one as is actually a pretty easy one, we can factor this one, I can factor this into r + 4 x r - 2 is equal 0 and that means my roots are r=-4 or 2.0402
Now I can write down my general solution here, the general solution and I'm following the format the we had at the beginning of the lesson, C1 e^-4t, putting the roots up in the exponents + C2 e^2t.0428
I do not have any initial conditions for this one, I'm just going to stop here with the general solution I can not find what the values of the constants are unless I have initial conditions.0451
I'm done with the general solution, just to recap what we did there, we took the differential equation, we wrote down the characteristic equation, filled in the constants, factored it, solve for values of r.0466
And in those values of r became the exponents in the general solution and we did E to each one of those values of r x TE and then we multiply each one by an arbitrary constant.0480
We got our general solution, we cannot figure out what the values of the constants are unless we have initial conditions, in our next example we have to solve the initial value problem y″ +2y′ -8 y =0.0492
And y(0)=1 and y′ of 0 is equal to 10, this is actually the same differential equation that we had in the previous problem, I'm going to go ahead and write down the general solution that we had from the previous problem.0511
Because that much of the problem is the same, y general is equal to c1e^-4T + C2e^2t, that I came from the previous problem, if you do not remember how we derive that just check back in example 1 and you will see where that comes from.0528
That was the solution to the differential equation, we solve that now we have to use the initial conditions to figure out what the values of the constants are, what we are going to do is look at that first initial condition.0550
We are going to plug in T equal 0 and y equals one, I will say one is equal to c1 E^ -4 x 0 + C2 e^2 x 0 and ofcourse e^0 is just one, that tells me that one is C1 + C2 , that is one equation in my unknown C1 and C2.0565
To get a second equation I'm going to use this other initial condition y′ of 0 is equal to 10, in order to use that, I got to find the derivative of y, I'm going t go back to the general solution and I'm going to find y′ is equal to.0593
Now C1 x is derivative of e^-4T, that -4 will pop out, I get -4 C1e^-4T, this is the derivative I'm finding now, +2 C2e^2t and then I will plug in n, again T is equal to 0 and y′ is equal to 10.0611
I will plug-in 10 for y′ and I will plug in 0 for T, which will give me -4C1 e^0 is just 1, +2 x C2 and the e^0 is just one again.0638
What I have here is one equation and another equation, 2 equations and 2 unknowns to solve for C1 and C2 and there is a lot of different ways you can solve 2 equations and 2 unknowns.0655
You probably learned several different ways in algebra class, you can use substitution, you can use linear combinations, you can use addition and subtraction, you can use matrices.0670
There is a lot of different ways to solve this, if you do not remember how do this, you might want to check back at the www.educator.com lectures on algebra.0681
The way I'm going to do it is use linear combination, I think I'm going to multiply this equation both sides by 4, the reason I'm doing that is I'm going to add it to this equation and I want those 4's to cancel.0689
If I multiply this equation by 4, I will get 4 is equal to 4C1 + 4C2 and then I will write the other equation over here 10 is equal to -4C1 + 2C2 and I'm going to add those equations together and the point of doing that is that I will get 14 on the left is equal to 0C1 + 6C2.0705
Now I'm going to solve for C2, I get C2 is equal to 14/6 which I can simplify down into 7/3 and now I plug that back into the first equation and try to figure out what C1 is.0758
I got one is equal to C1 + C2 and that is equal to c1 + 7/3 is one, I will subtract 7/3 from both sides and I will C1 is equal to 1 is 3/3, that is -4/3, now I figured out my values of C1 and C2 I will plug those back into the general solution.0779
This is the specific solution which satisfies the initial conditions y=-4/3 e^-4T + 7/3 e^2T, that is my specific solution that is supposed to satisfy both initial conditions.0815
Let me just recap what we did there, we started with the general solution and we got that from example 1, that is where that came from we did not actually solve that here, but if you check back in example 1, you will see where that general solution came from.0846
And then we tried to make it fit the 2 initial conditions, we looked at the initial conditions y(0) equal one, we plug y(0) in, we plug T= 0 and and we got e^0 on both sides we just got C1 + C2=1.0865
That is where we got one equation for C1 and C2 and then we took the derivative of the original equation, we got Y′ =-4 C1 x e^-4T and 2C2 x ei^2T and we plug in 0 there because we are looking at y′ of 0 is equal to 10.0887
We got 10 is equal to 4C1 + 2C2 and that gave us a second equation in C1 and C2, we got 2 linear equations and C1 and C2, there are lots of different ways you can solve these.0916
Any of them should work, if you have another way of solving 2 equations and 2 unknowns, it is okay if you use a different way but the way I used was to multiply the first equation by 4 and then add it to the second equation.0932
The point was that it made the C1 term go away and we got 6 C2 is equal to 14 , C2 is equal to 14(6) or 7/3 and then we plug back in for C2 into the first equation and we got C1 is equal to -4/3 and then we plugged C1 and C2 back into the general solution.0946
And we got our specific solution that satisfies both initial conditions, for our next example we have to find the general solution of y″ -4 y′ -5 y is equal to 0.0975
Again this is a linear homogeneous constant coefficients second-order differential equation, we are going to use the method of the characteristic equation to solve it, I'm going to write down the characteristic equation.0990
It is just the same equation as the differential equation except you use R instead of y and you translated into a polynomial, we have r ^2 from the y″ - 4 r -5 = 0.1003
And now we want to solve this to find the roots of this quadratic equation, you can use the quadratic formula, I'm going to factory it because it turns out that this one factors nicely.1021
We get r -5 x r + 1 is equal 0, my r is equal to 5 or-1 and what you do with those roots is you put them in the exponents and you multiply them by T, my general solution is y is equal to C1 e^-1t, I will just put e^-t + C2 e^5T.1032
By the way it does not matter which order you put them in, you can switch the order and have it C1 e^5T or C2 Ee^T, works just as well.1067
What we found here is the general solution to that second-order differential equation and we do not have any initial conditions on this, we are going to stop to the general solution, we do not have a way to find the values of the constant C1 and C2.1082
That is going to come in the next example, let us go ahead and take a look at that.1102
In example 4, we have to solve the initial value problem, it is the same differential equation as before y″ -4 y′ -5 y is equal to 0, but now we had 2 initial conditions, y(0)=4 and y′(0)=2.1109
Remember in the previous example we found the general solution to the differential equation y(gen) is equal to C1 e^-T + C2 e^5T and what we are going to doing with that is plug in our initial conditions.1128
This says when T is equal 0, y is equal 4, I will say 4 is equal to C1 x e^ -0+ C2 e^5 x 0, that is equal to C1 + C2 because e^0 is just 1 and then y′ of 0, to use that we have to take the derivative of our general solution.1152
y′ is negative C1 e^-T +5 C2 e^5T and again I will plug in T equal 0 and I will plug in 2 for y′, 2 is equal to -C1 e^-0 + 5 C2 E^5 x 0, that is -C1 +5 C2 because e^0 just 1 is equal to 2.1182
I have 2 equations and 2 unknowns and again there are several different ways you can solve this, you could do a substitution, solve for 1 variable and 1 equation and substitute it to the other equation.1226
You could use matrices, you can use linear combinations, what I'm going to do is take these 2 equations and I will just add 1 to the other one because I see that if I do that, the C1's will cancel each other out and I will get 6 C2.1239
I'm adding these 2 equations here, 6C2 is equal to 6 and there is no C1's because those cancel each other out, I will get C2 is equal to 1 and then if I plug that back in here to C1 + C2 is equal 4, I will get C1 is equal to 3.1258
Now I got my values of C1 and C2, I will plug goes back into my general solution and get the specific solution as C1 was 3, I get 3 e^-T + C2 is 1, just + e^5T.1280
That is my specific solution which satisfies both the differential equation and the 2 initial conditions, just to recap there we got our general solution that was from the previous example, example 3.1300
If you do not remember how we derive that, just check back in example 3 and you will see where that came from and then we plug in our 2 initial conditions, we plug our first one in and plug in T=0 and y=4.1319
We plug in 0 for T and 4 y and that reduce down to C1 + C2=4, for the second initial condition we had to figure out the derivative, we took the derivative of the general solution and we got -C1 e^-T + 5C2 e^5T.1332
And then we plug in 2 for y′ and we got 2 is equal to what we get plugging in 0, again that turn into -C1 +5C2=2, each one of those initial conditions gave us an equation and 2 unknowns.1355
Our unknowns now are C1 and C2, once we got those 2 equations and 2 unknowns, it turns into an algebra problem of solving for C1 and C2 and this one I was able to solve by adding the 2 equations.1373
I got 6c2=6, C2 is equal to 1 then I substituted back to get C1 is equal to 3, if you do not like the way I did that by adding the equations, you can also solve for one variable and substitute it into the other equation.1387
You can use matrices and determinants, there are lots of different ways to do and that just depends on what you are most comfortable with from your algebra class.1403
Once you figure out the C1 and C2, we plug those into the general solution up here and here and we get our specific solution y=3 e^-T + e^5T, that is our specific solution to the differential equation and both initial conditions.1410
Our last example here, we have to find at least one non zero solution to the differential equation y″ + 6y′ + 9y is equal to 0.1433
Just like all the others, we start out with the characteristic equation, that means we convert the y into r and the derivatives into exponents, r^2 + 6r +9 = 0.1445
That actually factors as a perfect square, that is r +3 ^2 is equal to 0, we get a double root, r=-3 and then our other root is also -3, we really only get one root from that, we had a solution here y is C1 e^-3 T.1463
We can not find a second solution because our other root is also -3, let me write that down.1491
But we can not find a second solution that is independent of our first solution that was e^-3T, left a little space here after the word "can't" because this is actually the subject of a later lectures, I'm going to say we can't, I will put that in red.1504
We can't yet find a second solution because a couple lectures later we will figure out what to do with repeated roots but in the meantime we do not know how to solve that.1546
I will say a common student mistake would be to write the general solution as well if you just can not blindly look at these 2 roots, you would say C1 e^-3T + C2 e^-3T because you just copy your 2 roots into the exponents here.1560
If you wrote that, that would be incorrect, that is not the general solution and the reason is because you really have 2 copies of the same solution there, you need to find a second independent solution.1597
We have not learned how to do that yet, in the meantime all we can offer as a solution is just the C1 e^ -3 T, there is another way to solve these equations with repeated root and we will learn how to do that, learn how to solve this in a later lecture.1607
You have to peek at a couple more lectures down the line and you will see one called repeated roots.1642
And that one we will learn how to find a second independent solution to an equation when we do have repeated roots, just to recap here, we started out with a characteristic equation where we converted it into a polynomial in r with exponents instead of derivatives.1661
We factored it down just like the others, we found the roots and then the new wrinkle in this example was that both the roots were the same, we were able to form one solution, C1 e^-3T but we can not find a second independent solution.1679
So we cannot tack on a C2 e^-3T because that would just be a copy of the first solution, in order to find the second solution we will have to come back and study this in more detail on our later lecture on repeated roots.1696
That is the end of our lecture on distinct roots, we will come back later and start talking about complex roots and repeated roots, these are the lectures on differential equations, my name is Will Murray and you are watching www.educator.com, thanks.1711

Professor Murray
Distinct Roots of Second Order Equations
Slide Duration:Table of Contents
1h 7m 21s
- Intro0:00
- Lesson Objectives0:19
- How to Solve Linear Equations2:54
- Calculate the Integrating Factor2:58
- Changes the Left Side so We Can Integrate Both Sides3:27
- Solving Linear Equations5:32
- Further Notes6:10
- If P(x) is Negative6:26
- Leave Off the Constant9:38
- The C Is Important When Integrating Both Sides of the Equation9:55
- Example 110:29
- Example 222:56
- Example 336:12
- Example 439:24
- Example 544:10
- Example 656:42
35m 11s
- Intro0:00
- Lesson Objectives0:19
- Some Equations Are Both Linear and Separable So You Can Use Either Technique to Solve Them1:33
- Important to Add C When You Do the Integration2:27
- Example 14:28
- Example 210:45
- Example 314:43
- Example 419:21
- Example 527:23
1h 11m 36s
- Intro0:00
- Lesson Objectives0:20
- If You Can Manipulate a Differential Equation Into a Certain Form, You Can Draw a Slope Field Also Known as a Direction Field0:23
- How You Do This0:45
- Solution Trajectories2:49
- Never Cross Each Other3:44
- General Solution to the Differential Equation4:03
- Use an Initial Condition to Find Which Solution Trajectory You Want4:59
- Example 16:52
- Example 214:20
- Example 326:36
- Example 434:21
- Example 546:09
- Example 659:51
1h 5m 19s
- Intro0:00
- Lesson Overview0:38
- Mixing1:00
- Population2:49
- Finance3:22
- Set Variables4:39
- Write Differential Equation6:29
- Solve It10:54
- Answer Questions11:47
- Example 113:29
- Example 224:53
- Example 332:13
- Example 442:46
- Example 555:05
1h 1m 20s
- Intro0:00
- Lesson Overview0:18
- Autonomous Differential Equations Have the Form y' = f(x)0:21
- Phase Plane Analysis0:48
- y' < 02:56
- y' > 03:04
- If we Perturb the Equilibrium Solutions5:51
- Equilibrium Solutions7:44
- Solutions Will Return to Stable Equilibria8:06
- Solutions Will Tend Away From Unstable Equilibria9:32
- Semistable Equilibria10:59
- Example 111:43
- Example 215:50
- Example 328:27
- Example 431:35
- Example 543:03
- Example 649:01
28m 44s
- Intro0:00
- Lesson Overview0:36
- Linear Means0:50
- Second-Order1:15
- Homogeneous1:30
- Constant Coefficient1:55
- Solve the Characteristic Equation2:33
- Roots r1 and r23:43
- To Find c1 and c2, Use Initial Conditions4:50
- Example 15:46
- Example 28:20
- Example 316:20
- Example 418:26
- Example 523:52
31m 49s
- Intro0:00
- Lesson Overview0:15
- Sometimes The Characteristic Equation Has Complex Roots1:12
- Example 13:21
- Example 27:42
- Example 315:25
- Example 418:59
- Example 527:52
43m 2s
- Intro0:00
- Lesson Overview0:23
- If the Characteristic Equation Has a Double Root1:46
- Reduction of Order3:10
- Example 17:23
- Example 29:20
- Example 314:12
- Example 431:49
- Example 533:21
50m 1s
- Intro0:00
- Lesson Overview0:11
- Inhomogeneous Equation Means the Right Hand Side is Not 0 Anymore0:21
- First Solve the Homogeneous Equation1:04
- Find a Particular Solution to the Inhomogeneous Equation Using Undetermined Coefficients2:03
- g(t) vs. Guess for ypar2:42
- If Any Term of Your Guess for ypar Looks Like Any Term of yhom5:07
- Example 17:54
- Example 215:25
- Example 323:45
- Example 433:35
- Example 542:57
49m 22s
- Intro0:00
- Lesson Overview0:31
- Inhomogeneous vs. Homogeneous0:47
- First Solve the Homogeneous Equation1:17
- Notice There is No Coefficient in Front of y''1:27
- Find a Particular Solution to the Inhomogeneous Equation Using Variation of Parameters2:32
- How to Solve4:33
- Hint on Solving the System5:23
- Example 17:27
- Example 217:46
- Example 323:14
- Example 431:49
- Example 536:00
57m 38s
- Intro0:00
- Lesson Overview0:36
- Taylor Series Expansion0:37
- Maclaurin Series2:36
- Common Maclaurin Series to Remember From Calculus3:35
- Radius of Convergence7:58
- Ratio Test12:05
- Example 115:18
- Example 220:02
- Example 327:32
- Example 439:33
- Example 545:42
1h 20m 28s
- Intro0:00
- Lesson Overview0:49
- Guess a Power Series Solution and Calculate Its Derivatives, Example 11:03
- Guess a Power Series Solution and Calculate Its Derivatives, Example 23:14
- Combine the Series5:00
- Match Exponents on x By Shifting Indices5:11
- Match Starting Indices By Pulling Out Initial Terms5:51
- Find a Recurrence Relation on the Coefficients7:09
- Example 17:46
- Example 219:10
- Example 329:57
- Example 441:46
- Example 557:23
- Example 61:09:12
24m 42s
- Intro0:00
- Lesson Overview0:11
- Euler Equation0:15
- Real, Distinct Roots2:22
- Real, Repeated Roots2:37
- Complex Roots2:49
- Example 13:51
- Example 26:20
- Example 38:27
- Example 413:04
- Example 515:31
- Example 618:31
1h 26m 17s
- Intro0:00
- Lesson Overview0:13
- Singular Point1:17
- Definition: Pole of Order n1:58
- Pole Of Order n2:04
- Regular Singular Point3:25
- Solving Around Regular Singular Points7:08
- Indical Equation7:30
- If the Difference Between the Roots is An Integer8:06
- If the Difference Between the Roots is Not An Integer8:29
- Example 18:47
- Example 214:57
- Example 325:40
- Example 447:23
- Example 51:09:01
41m 52s
- Intro0:00
- Lesson Overview0:09
- Laplace Transform of a Function f(t)0:18
- Laplace Transform is Linear1:04
- Example 11:43
- Example 218:30
- Example 322:06
- Example 428:27
- Example 533:54
47m 5s
- Intro0:00
- Lesson Overview0:09
- Laplace Transform L{f}0:13
- Run Partial Fractions0:24
- Common Laplace Transforms1:20
- Example 13:24
- Example 29:55
- Example 314:49
- Example 422:03
- Example 533:51
45m 15s
- Intro0:00
- Lesson Overview0:12
- Start With Initial Value Problem0:14
- Take the Laplace Transform of Both Sides of the Differential Equation0:37
- Plug in the Identities1:20
- Take the Inverse Laplace Transform to Find y2:40
- Example 14:15
- Example 211:30
- Example 317:59
- Example 424:51
- Example 536:05
57m 30s
- Intro0:00
- Lesson Overview0:41
- Matrix0:54
- Determinants4:45
- 3x3 Determinants5:08
- Eigenvalues and Eigenvectors7:01
- Eigenvector7:48
- Eigenvalue7:54
- Lesson Overview8:17
- Characteristic Polynomial8:47
- Find Corresponding Eigenvector9:03
- Example 110:19
- Example 216:49
- Example 320:52
- Example 425:34
- Example 535:05
59m 26s
- Intro0:00
- Lesson Overview1:11
- How to Solve Systems2:48
- Find the Eigenvalues and Their Corresponding Eigenvectors2:50
- General Solution4:30
- Use Initial Conditions to Find c1 and c24:57
- Graphing the Solutions5:20
- Solution Trajectories Tend Towards 0 or ∞ Depending on Whether r1 or r2 are Positive or Negative6:35
- Solution Trajectories Tend Towards the Axis Spanned by the Eigenvector Corresponding to the Larger Eigenvalue7:27
- Example 19:05
- Example 221:06
- Example 326:38
- Example 436:40
- Example 543:26
- Example 651:33
1h 3m 54s
- Intro0:00
- Lesson Overview0:47
- Recall That to Solve the System of Linear Differential Equations, We find the Eigenvalues and Eigenvectors0:52
- If the Eigenvalues are Complex, Then They Will Occur in Conjugate Pairs1:13
- Expanding Complex Solutions2:55
- Euler's Formula2:56
- Multiply This Into the Eigenvector, and Separate Into Real and Imaginary Parts1:18
- Graphing Solutions From Complex Eigenvalues5:34
- Example 19:03
- Example 220:48
- Example 328:34
- Example 441:28
- Example 551:21
45m 17s
- Intro0:00
- Lesson Overview0:44
- If the Characteristic Equation Has a Repeated Root, Then We First Find the Corresponding Eigenvector1:14
- Find the Generalized Eigenvector1:25
- Solutions from Repeated Eigenvalues2:22
- Form the Two Principal Solutions and the Two General Solution2:23
- Use Initial Conditions to Solve for c1 and c23:41
- Graphing the Solutions3:53
- Example 18:10
- Example 216:24
- Example 323:25
- Example 431:04
- Example 538:17
43m 37s
- Intro0:00
- Lesson Overview0:35
- First Solve the Corresponding Homogeneous System x'=Ax0:37
- Solving the Inhomogeneous System2:32
- Look for a Single Particular Solution xpar to the Inhomogeneous System2:36
- Plug the Guess Into the System and Solve for the Coefficients3:27
- Add the Homogeneous Solution and the Particular Solution to Get the General Solution3:52
- Example 14:49
- Example 29:30
- Example 315:54
- Example 420:39
- Example 529:43
- Example 637:41
1h 8m 12s
- Intro0:00
- Lesson Overview0:37
- Find Two Solutions to the Homogeneous System2:04
- Look for a Single Particular Solution xpar to the inhomogeneous system as follows2:59
- Solutions by Variation of Parameters3:35
- General Solution and Matrix Inversion6:35
- General Solution6:41
- Hint for Finding Ψ-16:58
- Example 18:13
- Example 216:23
- Example 332:23
- Example 437:34
- Example 549:00
45m 30s
- Intro0:00
- Lesson Overview0:32
- Euler's Method is a Way to Find Numerical Approximations for Initial Value Problems That We Cannot Solve Analytically0:34
- Based on Drawing Lines Along Slopes in a Direction Field1:18
- Formulas for Euler's Method1:57
- Example 14:47
- Example 214:45
- Example 324:03
- Example 433:01
- Example 537:55
41m 4s
- Intro0:00
- Lesson Overview0:43
- Runge-Kutta is Know as the Improved Euler Method0:46
- More Sophisticated Than Euler's Method1:09
- It is the Fundamental Algorithm Used in Most Professional Software to Solve Differential Equations1:16
- Order 2 Runge-Kutta Algorithm1:45
- Runge-Kutta Order 2 Algorithm2:09
- Example 14:57
- Example 210:57
- Example 319:45
- Example 424:35
- Example 531:39
38m 22s
- Intro0:00
- Lesson Overview1:04
- Partial Derivative of u with respect to x1:37
- Geometrically, ux Represents the Slope As You Walk in the x-direction on the Surface2:47
- Computing Partial Derivatives3:46
- Algebraically, to Find ux You Treat The Other Variable t as a Constant and Take the Derivative with Respect to x3:49
- Second Partial Derivatives4:16
- Clairaut's Theorem Says that the Two 'Mixed Partials' Are Always Equal5:21
- Example 15:34
- Example 27:40
- Example 311:17
- Example 414:23
- Example 531:55
44m 40s
- Intro0:00
- Lesson Overview0:28
- Partial Differential Equation0:33
- Most Common Ones1:17
- Boundary Value Problem1:41
- Common Partial Differential Equations3:41
- Heat Equation4:04
- Wave Equation5:44
- Laplace's Equation7:50
- Example 18:35
- Example 214:21
- Example 321:04
- Example 425:54
- Example 535:12
57m 44s
- Intro0:00
- Lesson Overview0:26
- Separation of Variables is a Technique for Solving Some Partial Differential Equations0:29
- Separation of Variables2:35
- Try to Separate the Variables2:38
- If You Can, Then Both Sides Must Be Constant2:52
- Reorganize These Intro Two Ordinary Differential Equations3:05
- Example 14:41
- Example 211:06
- Example 318:30
- Example 425:49
- Example 532:53
1h 24m 33s
- Intro0:00
- Lesson Overview0:38
- Fourier Series0:42
- Find the Fourier Coefficients by the Formulas2:05
- Notes on Fourier Series3:34
- Formula Simplifies3:35
- Function Must be Periodic4:23
- Even and Odd Functions5:37
- Definition5:45
- Examples6:03
- Even and Odd Functions and Fourier Series9:47
- If f is Even9:52
- If f is Odd11:29
- Extending Functions12:46
- If We Want a Cosine Series14:13
- If We Wants a Sine Series15:20
- Example 117:39
- Example 243:23
- Example 351:14
- Example 41:01:52
- Example 51:11:53
47m 41s
- Intro0:00
- Lesson Overview0:22
- Solving the Heat Equation1:03
- Procedure for the Heat Equation3:29
- Extend So That its Fourier Series Will Have Only Sines3:57
- Find the Fourier Series for f(x)4:19
- Example 15:21
- Example 28:08
- Example 317:42
- Example 425:13
- Example 528:53
- Example 642:22
3 answers
Sun Jan 18, 2015 10:32 AM
Post by John Panagiotopoulos on June 21, 2013
how did you get that equation y=ce^rt.....Do you have a proof you could put up please?
1 answer
Sun Apr 14, 2013 5:58 PM
Post by Nicholas Wilkins on April 9, 2013
I believe you left out the 'describe the behavior of the solution as t approaches infinity.' (in the second example)