Dr. Carleen Eaton

Dr. Carleen Eaton

Viral Structure and Genetics

Slide Duration:

Table of Contents

Section 1: Chemistry of Life
Elements, Compounds, and Chemical Bonds

56m 18s

Intro
0:00
Elements
0:09
Elements
0:48
Matter
0:55
Naturally Occurring Elements
1:12
Atomic Number and Atomic Mass
2:39
Compounds
3:06
Molecule
3:07
Compounds
3:14
Examples
3:20
Atoms
4:53
Atoms
4:56
Protons, Neutrons, and Electrons
5:29
Isotopes
10:42
Energy Levels of Electrons
13:01
Electron Shells
13:13
Valence Shell
13:22
Example: Electron Shells and Potential Energy
13:28
Covalent Bonds
19:52
Covalent Bonds
19:54
Examples
20:03
Polar and Nonpolar Covalent Bonds
23:54
Polar Bond
24:07
Nonpolar Bonds
24:17
Examples
24:25
Ionic Bonds
29:04
Ionic Bond, Cations, Anions
29:19
Example: NaCl
29:30
Hydrogen Bond
33:18
Hydrogen Bond
33:20
Chemical Reactions
35:36
Example: Reactants, Products and Chemical Reactions
35:45
Molecular Mass and Molar Concentration
38:45
Avogadro's Number and Mol
39:12
Examples: Molecular Mass and Molarity
42:10
Example 1: Proton, Neutrons and Electrons
47:05
Example 2: Reactants and Products
49:35
Example 3: Bonding
52:39
Example 4: Mass
53:59
Properties of Water

50m 23s

Intro
0:00
Molecular Structure of Water
0:21
Molecular Structure of Water
0:27
Properties of Water
4:30
Cohesive
4:55
Transpiration
5:29
Adhesion
6:20
Surface Tension
7:17
Properties of Water, cont.
9:14
Specific Heat
9:25
High Heat Capacity
13:24
High Heat of Evaporation
16:42
Water as a Solvent
21:13
Solution
21:28
Solvent
21:48
Example: Water as a Solvent
22:22
Acids and Bases
25:40
Example
25:41
pH
36:30
pH Scale: Acidic, Neutral, and Basic
36:35
Example 1: Molecular Structure and Properties of Water
41:18
Example 2: Special Properties of Water
42:53
Example 3: pH Scale
44:46
Example 4: Acids and Bases
46:19
Organic Compounds

53m 54s

Intro
0:00
Organic Compounds
0:09
Organic Compounds
0:11
Inorganic Compounds
0:15
Examples: Organic Compounds
1:15
Isomers
5:52
Isomers
5:55
Structural Isomers
6:23
Geometric Isomers
8:14
Enantiomers
9:55
Functional Groups
12:46
Examples: Functional Groups
12:59
Amino Group
13:51
Carboxyl Group
14:38
Hydroxyl Group
15:22
Methyl Group
16:14
Carbonyl Group
16:30
Phosphate Group
17:51
Carbohydrates
18:26
Carbohydrates
19:07
Example: Monosaccharides
21:12
Carbohydrates, cont.
24:11
Disaccharides, Polysaccharides and Examples
24:21
Lipids
35:52
Examples of Lipids
36:04
Saturated and Unsaturated
38:57
Phospholipids
43:26
Phospholipids
43:29
Example
43:34
Steroids
46:24
Cholesterol
46:28
Example 1: Isomers
48:11
Example 2: Functional Groups
50:45
Example 3: Galactose, Ketose, and Aldehyde Sugar
52:24
Example 4: Class of Molecules
53:06
Nucleic Acids and Proteins

37m 23s

Intro
0:00
Nucleic Acids
0:09
Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA)
0:29
Nucleic Acids, cont.
2:56
Purines
3:10
Pyrimidines
3:32
Double Helix
4:59
Double Helix and Example
5:01
Proteins
12:33
Amino Acids and Polypeptides
12:39
Examples: Amino Acid
13:25
Polypeptide Formation
18:09
Peptide Bonds
18:14
Primary Structure
18:35
Protein Structure
23:19
Secondary Structure
23:22
Alpha Helices and Beta Pleated Sheets
23:34
Protein Structure
25:43
Tertiary Structure
25:44
5 Types of Interaction
26:56
Example 1: Complementary DNA Strand
31:45
Example 2: Differences Between DNA and RNA
33:19
Example 3: Amino Acids
34:32
Example 4: Tertiary Structure of Protein
35:46
Section 2: Cell Structure and Function
Cell Types (Prokaryotic and Eukaryotic)

45m 50s

Intro
0:00
Cell Theory and Cell Types
0:12
Cell Theory
0:13
Prokaryotic and Eukaryotic Cells
0:36
Endosymbiotic Theory
1:13
Study of Cells
4:07
Tools and Techniques
4:08
Light Microscopes
5:08
Light vs. Electron Microscopes: Magnification
5:18
Light vs. Electron Microscopes: Resolution
6:26
Light vs. Electron Microscopes: Specimens
7:53
Electron Microscopes: Transmission and Scanning
8:28
Cell Fractionation
10:01
Cell Fractionation Step 1: Homogenization
10:33
Cell Fractionation Step 2: Spin
11:24
Cell Fractionation Step 3: Differential Centrifugation
11:53
Comparison of Prokaryotic and Eukaryotic Cells
14:12
Prokaryotic vs. Eukaryotic Cells: Domains
14:43
Prokaryotic vs. Eukaryotic Cells: Plasma Membrane
15:40
Prokaryotic vs. Eukaryotic Cells: Cell Walls
16:15
Prokaryotic vs. Eukaryotic Cells: Genetic Materials
16:38
Prokaryotic vs. Eukaryotic Cells: Structures
17:28
Prokaryotic vs. Eukaryotic Cells: Unicellular and Multicellular
18:19
Prokaryotic vs. Eukaryotic Cells: Size
18:31
Plasmids
18:52
Prokaryotic vs. Eukaryotic Cells
19:22
Nucleus
19:24
Organelles
19:48
Cytoskeleton
20:02
Cell Wall
20:35
Ribosomes
20:57
Size
21:37
Comparison of Plant and Animal Cells
22:15
Plasma Membrane
22:55
Plant Cells Only: Cell Walls
23:12
Plant Cells Only: Central Vacuole
25:08
Animal Cells Only: Centrioles
26:40
Animal Cells Only: Lysosomes
27:43
Plant vs. Animal Cells
29:16
Overview of Plant and Animal Cells
29:17
Evidence for the Endosymbiotic Theory
30:52
Characteristics of Mitochondria and Chloroplasts
30:54
Example 1: Prokaryotic vs. Eukaryotic Cells
35:44
Example 2: Endosymbiotic Theory and Evidence
38:38
Example 3: Plant and Animal Cells
41:49
Example 4: Cell Fractionation
43:44
Subcellular Structure

59m 38s

Intro
0:00
Prokaryotic Cells
0:09
Shapes of Prokaryotic Cells
0:22
Cell Wall
1:19
Capsule
3:23
Pili/Fimbria
3:54
Flagella
4:35
Nucleoid
6:16
Plasmid
6:37
Ribosomes
7:09
Eukaryotic Cells (Animal Cell Structure)
8:01
Plasma Membrane
8:13
Microvilli
8:48
Nucleus
9:47
Nucleolus
11:06
Ribosomes: Free and Bound
12:26
Rough Endoplasmic Reticulum (RER)
13:43
Eukaryotic Cells (Animal Cell Structure), cont.
14:51
Endoplasmic Reticulum: Smooth and Rough
15:08
Golgi Apparatus
17:55
Vacuole
20:43
Lysosome
22:01
Mitochondria
25:40
Peroxisomes
28:18
Cytoskeleton
30:41
Cytoplasm and Cytosol
30:53
Microtubules: Centrioles, Spindel Fibers, Clagell, Cillia
32:06
Microfilaments
36:39
Intermediate Filaments and Kerotin
38:52
Eukaryotic Cells (Plant Cell Structure)
40:08
Plasma Membrane, Primary Cell Wall, and Secondary Cell Wall
40:30
Middle Lamella
43:21
Central Cauole
44:12
Plastids: Leucoplasts, Chromoplasts, Chrloroplasts
45:35
Chloroplasts
47:06
Example 1: Structures and Functions
48:46
Example 2: Cell Walls
51:19
Example 3: Cytoskeleton
52:53
Example 4: Antibiotics and the Endosymbiosis Theory
56:55
Cell Membranes and Transport

53m 10s

Intro
0:00
Cell Membrane Structure
0:09
Phospholipids Bilayer
0:11
Chemical Structure: Amphipathic and Fatty Acids
0:25
Cell Membrane Proteins
2:44
Fluid Mosaic Model
2:45
Peripheral Proteins and Integral Proteins
3:19
Transmembrane Proteins
4:34
Cholesterol
4:48
Functions of Membrane Proteins
6:39
Transport Across Cell Membranes
9:52
Transport Across Cell Membranes
9:53
Methods of Passive Transport
12:07
Passive and Active Transport
12:08
Simple Diffusion
12:45
Facilitated Diffusion
15:20
Osmosis
17:17
Definition and Example of Osmosis
17:18
Hypertonic, Hypotonic, and Isotonic
21:47
Active Transport
27:57
Active Transport
28:17
Sodium and Potassium Pump
29:45
Cotransport
34:38
2 Types of Active Transport
37:09
Endocytosis and Exocytosis
37:38
Endocytosis and Exocytosis
37:51
Types of Endocytosis: Pinocytosis
40:39
Types of Endocytosis: Phagocytosis
41:02
Receptor Mediated Endocytosis
41:27
Receptor Mediated Endocytosis
41:28
Example 1: Cell Membrane and Permeable Substances
43:59
Example 2: Osmosis
45:20
Example 3: Active Transport, Cotransport, Simple and Facilitated Diffusion
47:36
Example 4: Match Terms with Definition
50:55
Cellular Communication

57m 9s

Intro
0:00
Extracellular Matrix
0:28
The Extracellular Matrix (ECM)
0:29
ECM in Animal Cells
0:55
Fibronectin and Integrins
1:34
Intercellular Communication in Plants
2:48
Intercellular Communication in Plants: Plasmodesmata
2:50
Cell to Cell Communication in Animal Cells
3:39
Cell Junctions
3:42
Desmosomes
3:54
Tight Junctions
5:07
Gap Junctions
7:00
Cell Signaling
8:17
Cell Signaling: Ligand and Signal Transduction Pathway
8:18
Direct Contact
8:48
Over Distances Contact and Hormones
10:09
Stages of Cell Signaling
11:53
Reception Phase
11:54
Transduction Phase
13:49
Response Phase
14:45
Cell Membrane Receptors
15:37
G-Protein Coupled Receptor
15:38
Cell Membrane Receptor, Cont.
21:37
Receptor Tyrosine Kinases (RTKs)
21:38
Autophosphorylation, Monomer, and Dimer
22:57
Cell Membrane Receptor, Cont.
27:01
Ligand-Gated Ion Channels
27:02
Intracellular Receptors
29:43
Intracellular Receptor and Receptor -Ligand Complex
29:44
Signal Transduction
32:57
Signal Transduction Pathways
32:58
Adenylyl Cyclase and cAMP
35:53
Second Messengers
39:18
cGMP, Inositol Trisphosphate, and Diacylglycerol
39:20
Cell Response
45:15
Cell Response
45:16
Apoptosis
46:57
Example 1: Tight Junction and Gap Junction
48:29
Example 2: Three Phases of Cell Signaling
51:48
Example 3: Ligands and Binding of Hormone
54:03
Example 4: Signal Transduction
56:06
Section 3: Cell Division
The Cell Cycle

37m 49s

Intro
0:00
Functions of Cell Division
0:09
Overview of Cell Division: Reproduction, Growth, and Repair
0:11
Important Term: Daughter Cells
2:25
Chromosome Structure
3:36
Chromosome Structure: Sister Chromatids and Centromere
3:37
Chromosome Structure: Chromatin
4:31
Chromosome with One Chromatid or Two Chromatids
5:25
Chromosome Structure: Long and Short Arm
6:49
Mitosis and Meiosis
7:00
Mitosis
7:41
Meiosis
8:40
The Cell Cycle
10:43
Mitotic Phase and Interphase
10:44
Cytokinesis
15:51
Cytokinesis in Animal Cell: Cleavage Furrow
15:52
Cytokinesis in Plant Cell: Cell Plate
17:28
Control of the Cell Cycle
18:28
Cell Cycle Control System and Checkpoints
18:29
Cyclins and Cyclin Dependent Kinases
21:18
Cyclins and Cyclin Dependent Kinases (CDKSs)
21:20
MPF
23:17
Internal Factor Regulating Cell Cycle
24:00
External Factor Regulating Cell Cycle
24:53
Contact Inhibition and Anchorage Dependent
25:53
Cancer and the Cell Cycle
27:42
Cancer Cells
27:46
Example1: Parts of the Chromosome
30:15
Example 2: Cell Cycle
31:50
Example 3: Control of the Cell Cycle
33:32
Example 4: Cancer and the Cell
35:01
Mitosis

35m 1s

Intro
0:00
Review of the Cell Cycle
0:09
Interphase: G1 Phase
0:34
Interphase: S Phase
0:56
Interphase: G2 Phase
1:31
M Phase: Mitosis and Cytokinesis
1:47
Overview of Mitosis
3:08
What is Mitosis?
3:10
Overview of Mitosis
3:17
Diploid and Haploid
5:37
Homologous Chromosomes
6:04
The Spindle Apparatus
11:57
The Spindle Apparatus
12:00
Centrosomes and Centrioles
12:40
Microtubule Organizing Center
13:03
Spindle Fiber of Spindle Microtubules
13:23
Kinetochores
14:06
Asters
15:45
Prophase
16:47
First Phase of Mitosis: Prophase
16:54
Metaphase
20:05
Second Phase of Mitosis: Metaphase
20:10
Anaphase
22:52
Third Phase of Mitosis: Anaphase
22:53
Telophase and Cytokinesis
24:34
Last Phase of Mitosis: Telophase and Cytokinesis
24:35
Summary of Mitosis
27:46
Summary of Mitosis
27:47
Example 1: Spindle Apparatus
28:50
Example 2: Last Phase of Mitosis
30:39
Example 3: Prophase
32:41
Example 4: Identify the Phase
33:52
Meiosis

1h 58s

Intro
0:00
Haploid and Diploid Cells
0:09
Diploid and Somatic Cells
0:29
Haploid and Gametes
1:20
Example: Human Cells and Chromosomes
1:41
Sex Chromosomes
6:00
Comparison of Mitosis and Meiosis
10:42
Mitosis Vs. Meiosis: Cell Division
10:59
Mitosis Vs. Meiosis: Daughter Cells
12:31
Meiosis: Pairing of Homologous Chromosomes
13:40
Mitosis and Meiosis
14:21
Process of Mitosis
14:27
Process of Meiosis
16:12
Synapsis and Crossing Over
19:14
Prophase I: Synapsis and Crossing Over
19:15
Chiasmata
22:33
Meiosis I
25:49
Prophase I: Crossing Over
25:50
Metaphase I: Homologs Line Up
26:00
Anaphase I: Homologs Separate
28:16
Telophase I and Cytokinesis
29:15
Independent Assortment
30:58
Meiosis II
32:17
Propphase II
33:50
Metaphase II
34:06
Anaphase II
34:50
Telophase II
36:09
Cytokinesis
37:00
Summary of Meiosis
38:15
Summary of Meiosis
38:16
Cell Division Mechanism in Plants
41:57
Example 1: Cell Division and Meiosis
46:15
Example 2: Phases of Meiosis
50:22
Example 3: Label the Figure
54:29
Example 4: Four Differences Between Mitosis and Meiosis
56:37
Section 4: Cellular Energetics
Enzymes

51m 3s

Intro
0:00
Law of Thermodynamics
0:08
Thermodynamics
0:09
The First Law of Thermodynamics
0:37
The Second Law of Thermodynamics
1:24
Entropy
1:35
The Gibbs Free Energy Equation
3:07
The Gibbs Free Energy Equation
3:08
ATP
8:23
Adenosine Triphosphate (ATP)
8:24
Cellular Respiration
11:32
Catabolic Pathways
12:28
Anabolic Pathways
12:54
Enzymes
14:31
Enzymes
14:32
Enzymes and Exergonic Reaction
14:40
Enzymes and Endergonic Reaction
16:36
Enzyme Specificity
21:29
Substrate
21:41
Induced Fit
23:04
Factors Affecting Enzyme Activity
25:55
Substrate Concentration
26:07
pH
27:10
Temperature
29:14
Presence of Cofactors
29:57
Regulation of Enzyme Activity
31:12
Competitive Inhibitors
32:13
Noncompetitive Inhibitors
33:52
Feedback Inhibition
35:22
Allosteric Interactions
36:56
Allosteric Regulators
37:00
Example 1: Is the Inhibitor Competitive or Noncompetitive?
40:49
Example 2: Thermophiles
44:18
Example 3: Exergonic or Endergonic
46:09
Example 4: Energy Vs. Reaction Progress Graph
48:47
Glycolysis and Anaerobic Respiration

38m 1s

Intro
0:00
Cellular Respiration Overview
0:13
Cellular Respiration
0:14
Anaerobic Respiration vs. Aerobic Respiration
3:50
Glycolysis Overview
4:48
Overview of Glycolysis
4:50
Glycolysis Involves a Redox Reaction
7:02
Redox Reaction
7:04
Glycolysis
15:04
Important Facts About Glycolysis
15:07
Energy Invested Phase
16:12
Splitting of Fructose 1,6-Phosphate and Energy Payoff Phase
17:50
Substrate Level Phophorylation
22:12
Aerobic Versus Anaerobic Respiration
23:57
Aerobic Versus Anaerobic Respiration
23:58
Cellular Respiration Overview
27:15
When Cellular Respiration is Anaerobic
27:17
Glycolysis
28:26
Alcohol Fermentation
28:45
Lactic Acid Fermentation
29:58
Example 1: Glycolysis
31:04
Example 2: Glycolysis, Fermentation and Anaerobic Respiration
33:44
Example 3: Aerobic Respiration Vs. Anaerobic Respiration
35:25
Example 4: Exergonic Reaction and Endergonic Reaction
36:42
Aerobic Respiration

51m 6s

Intro
0:00
Aerobic Vs. Anaerobic Respiration
0:06
Aerobic and Anaerobic Comparison
0:07
Review of Glycolysis
1:48
Overview of Glycolysis
2:06
Glycolysis: Energy Investment Phase
2:25
Glycolysis: Energy Payoff Phase
2:58
Conversion of Pyruvate to Acetyl CoA
4:55
Conversion of Pyruvate to Acetyl CoA
4:56
Energy Formation
8:06
Mitochondrial Structure
8:58
Endosymbiosis Theory
9:23
Matrix
10:00
Outer Membrane, Inner Membrane, and Intermembrane Space
10:43
Cristae
11:47
The Citric Acid Cycle
12:11
The Citric Acid Cycle (Also Called Krebs Cycle)
12:12
Substrate Level Phosphorylation
18:47
Summary of ATP, NADH, and FADH2 Production
23:13
Process: Glycolysis
23:28
Process: Acetyl CoA Production
23:36
Process: Citric Acid Cycle
23:52
The Electron Transport Chain
24:24
Oxidative Phosphorylation
24:28
The Electron Transport Chain and ATP Synthase
25:20
Carrier Molecules: Cytochromes
27:18
Carrier Molecules: Flavin Mononucleotide (FMN)
28:05
Chemiosmosis
32:46
The Process of Chemiosmosis
32:47
Summary of ATP Produced by Aerobic Respiration
38:24
ATP Produced by Aerobic Respiration
38:27
Example 1: Aerobic Respiration
43:38
Example 2: Label the Location for Each Process and Structure
45:08
Example 3: The Electron Transport Chain
47:06
Example 4: Mitochondrial Inner Membrane
48:38
Photosynthesis

1h 2m 52s

Intro
0:00
Photosynthesis
0:09
Introduction to Photosynthesis
0:10
Autotrophs and Heterotrophs
0:25
Overview of Photosynthesis Reaction
1:05
Leaf Anatomy and Chloroplast Structure
2:54
Chloroplast
2:55
Cuticle
3:16
Upper Epidermis
3:27
Mesophyll
3:40
Stomates
4:00
Guard Cells
4:45
Transpiration
5:01
Vascular Bundle
5:20
Stroma and Double Membrane
6:20
Grana
7:17
Thylakoids
7:30
Dark Reaction and Light Reaction
7:46
Light Reactions
8:43
Light Reactions
8:47
Pigments: Chlorophyll a, Chlorophyll b, and Carotenoids
9:19
Wave and Particle
12:10
Photon
12:34
Photosystems
13:24
Photosystems
13:28
Reaction-Center Complex and Light Harvesting Complexes
14:01
Noncyclic Photophosphorylation
17:46
Noncyclic Photophosphorylation Overview
17:47
What is Photophosphorylation?
18:25
Noncyclic Photophosphorylation Process
19:07
Photolysis and The Rest of Noncyclic Photophosphorylation
21:33
Cyclic Photophosphorylation
31:45
Cyclic Photophosphorylation
31:46
Light Independent Reactions
34:34
The Calvin Cycle
34:35
C3 Plants and Photorespiration
40:31
C3 Plants and Photorespiration
40:32
C4 Plants
45:32
C4 Plants: Structures and Functions
45:33
CAM Plants
50:25
CAM Plants: Structures and Functions
50:35
Example 1: Calvin Cycle
54:34
Example 2: C4 Plant
55:48
Example 3: Photosynthesis and Photorespiration
58:35
Example 4: CAM Plants
1:00:41
Section 5: Molecular Genetics
DNA Synthesis

38m 45s

Intro
0:00
Review of DNA Structure
0:09
DNA Molecules
0:10
Nitrogenous Base: Pyrimidines and Purines
1:25
DNA Double Helix
3:03
Complementary Strands of DNA
3:12
5' to 3' & Antiparallel
4:55
Overview of DNA Replication
7:10
DNA Replication & Semiconservative
7:11
DNA Replication
10:26
Origin of Replication
10:28
Helicase
11:10
Single-Strand Binding Protein
12:05
Topoisomerases
13:14
DNA Polymerase
14:26
Primase
15:55
Leading and Lagging Strands
16:51
Leading Strand and Lagging Strand
16:52
Okazaki Fragments
18:10
DNA Polymerase I
20:11
Ligase
21:12
Proofreading and Mismatch Repair
22:18
Proofreading
22:19
Mismatch
23:33
Telomeres
24:58
Telomeres
24:59
Example 1: Function of Enzymes During DNA Synthesis
28:09
Example 2: Accuracy of the DNA Sequence
31:42
Example 3: Leading Strand and Lagging Strand
32:38
Example 4: Telomeres
35:40
Transcription and Translation

1h 17m 1s

Intro
0:00
Transcription and Translation Overview
0:07
From DNA to RNA to Protein
0:09
Structure and Types of RNA
3:14
Structure and Types of RNA
3:33
mRNA
6:19
rRNA
7:02
tRNA
7:28
Transcription
7:54
Initiation Phase
8:11
Elongation Phase
12:12
Termination Phase
14:51
RNA Processing
16:11
Types of RNA Processing
16:12
Exons and Introns
16:35
Splicing & Spliceosomes
18:27
Addition of a 5' Cap and a Poly A tail
20:41
Alternative Splicing
21:43
Translation
23:41
Nucleotide Triplets or Codons
23:42
Start Codon
25:24
Stop Codons
25:38
Coding of Amino Acids and Wobble Position
25:57
Translation Cont.
28:29
Transfer RNA (tRNA): Structures and Functions
28:30
Ribosomes
35:15
Peptidyl, Aminoacyl, and Exit Site
35:23
Steps of Translation
36:58
Initiation Phase
37:12
Elongation Phase
43:12
Termination Phase
45:28
Mutations
49:43
Types of Mutations
49:44
Substitutions: Silent
51:11
Substitutions: Missense
55:27
Substitutions: Nonsense
59:37
Insertions and Deletions
1:01:10
Example 1: Three Types of Processing that are Performed on pre-mRNA
1:06:53
Example 2: The Process of Translation
1:09:10
Example 3: Transcription
1:12:04
Example 4: Three Types of Substitution Mutations
1:14:09
Viral Structure and Genetics

43m 12s

Intro
0:00
Structure of Viruses
0:09
Structure of Viruses: Capsid and Envelope
0:10
Bacteriophage
1:48
Other Viruses
2:28
Overview of Viral Reproduction
3:15
Host Range
3:48
Step 1: Bind to Host Cell
4:39
Step 2: Viral Nuclei Acids Enter the Cell
5:15
Step 3: Viral Nucleic Acids & Proteins are Synthesized
5:54
Step 4: Virus Assembles
6:34
Step 5: Virus Exits the Cell
6:55
The Lytic Cycle
7:37
Steps in the Lytic Cycle
7:38
The Lysogenic Cycle
11:27
Temperate Phage
11:34
Steps in the Lysogenic Cycle
12:09
RNA Viruses
16:57
Types of RNA Viruses
17:15
Positive Sense
18:16
Negative Sense
18:48
Reproductive Cycle of RNA Viruses
19:32
Retroviruses
25:48
Complementary DNA (cDNA) & Reverse Transcriptase
25:49
Life Cycle of a Retrovirus
28:22
Prions
32:42
Prions: Definition and Examples
32:45
Viroids
34:46
Example 1: The Lytic Cycle
35:37
Example 2: Retrovirus
38:03
Example 3: Positive Sense RNA vs. Negative Sense RNA
39:10
Example 4: The Lysogenic Cycle
40:42
Bacterial Genetics and Gene Regulation

49m 45s

Intro
0:00
Bacterial Genomes
0:09
Structure of Bacterial Genomes
0:16
Transformation
1:22
Transformation
1:23
Vector
2:49
Transduction
3:32
Process of Transduction
3:38
Conjugation
8:06
Conjugation & F factor
8:07
Operons
14:02
Definition and Example of Operon
14:52
Structural Genes
16:23
Promoter Region
17:04
Regulatory Protein & Operators
17:53
The lac Operon
20:09
The lac Operon: Inducible System
20:10
The trp Operon
28:02
The trp Operon: Repressible System
28:03
Corepressor
31:37
Anabolic & Catabolic
33:12
Positive Regulation of the lac Operon
34:39
Positive Regulation of the lac Operon
34:40
Example 1: The Process of Transformation
39:07
Example 2: Operon & Terms
43:29
Example 3: Inducible lac Operon and Repressible trp Operon
45:15
Example 4: lac Operon
47:10
Eukaryotic Gene Regulation and Mobile Genetic Elements

54m 26s

Intro
0:00
Mechanism of Gene Regulation
0:11
Differential Gene Expression
0:13
Levels of Regulation
2:24
Chromatin Structure and Modification
4:35
Chromatin Structure
4:36
Levels of Packing
5:50
Euchromatin and Heterochromatin
8:58
Modification of Chromatin Structure
9:58
Epigenetic
12:49
Regulation of Transcription
14:20
Promoter Region, Exon, and Intron
14:26
Enhancers: Control Element
15:31
Enhancer & DNA-Bending Protein
17:25
Coordinate Control
21:23
Silencers
23:01
Post-Transcriptional Regulation
24:05
Post-Transcriptional Regulation
24:07
Alternative Splicing
27:19
Differences in mRNA Stability
28:02
Non-Coding RNA Molecules: micro RNA & siRNA
30:01
Regulation of Translation and Post-Translational Modifications
32:31
Regulation of Translation and Post-Translational Modifications
32:55
Ubiquitin
35:21
Proteosomes
36:04
Transposons
37:50
Mobile Genetic Elements
37:56
Barbara McClintock
38:37
Transposons & Retrotransposons
40:38
Insertion Sequences
43:14
Complex Transposons
43:58
Example 1: Four Mechanisms that Decrease Production of Protein
45:13
Example 2: Enhancers and Gene Expression
49:09
Example 3: Primary Transcript
50:41
Example 4: Retroviruses and Retrotransposons
52:11
Biotechnology

49m 26s

Intro
0:00
Definition of Biotechnology
0:08
Biotechnology
0:09
Genetic Engineering
1:05
Example: Golden Corn
1:57
Recombinant DNA
2:41
Recombinant DNA
2:42
Transformation
3:24
Transduction
4:24
Restriction Enzymes, Restriction Sites, & DNA Ligase
5:32
Gene Cloning
13:48
Plasmids
14:20
Gene Cloning: Step 1
17:35
Gene Cloning: Step 2
17:57
Gene Cloning: Step 3
18:53
Gene Cloning: Step 4
19:46
Gel Electrophoresis
27:25
What is Gel Electrophoresis?
27:26
Gel Electrophoresis: Step 1
28:13
Gel Electrophoresis: Step 2
28:24
Gel Electrophoresis: Step 3 & 4
28:39
Gel Electrophoresis: Step 5
29:55
Southern Blotting
31:25
Polymerase Chain Reaction (PCR)
32:11
Polymerase Chain Reaction (PCR)
32:12
Denaturing Phase
35:40
Annealing Phase
36:07
Elongation/ Extension Phase
37:06
DNA Sequencing and the Human Genome Project
39:19
DNA Sequencing and the Human Genome Project
39:20
Example 1: Gene Cloning
40:40
Example 2: Recombinant DNA
43:04
Example 3: Match Terms With Descriptions
45:43
Example 4: Polymerase Chain Reaction
47:36
Section 6: Heredity
Mendelian Genetics

1h 32m 8s

Intro
0:00
Background
0:40
Gregory Mendel & Mendel's Law
0:41
Blending Hypothesis
1:04
Particulate Inheritance
2:08
Terminology
2:55
Gene
3:05
Locus
3:57
Allele
4:37
Dominant Allele
5:48
Recessive Allele
7:38
Genotype
9:22
Phenotype
10:01
Homozygous
10:44
Heterozygous
11:39
Penetrance
11:57
Expressivity
14:15
Mendel's Experiments
15:31
Mendel's Experiments: Pea Plants
15:32
The Law of Segregation
21:16
Mendel's Conclusions
21:17
The Law of Segregation
22:57
Punnett Squares
28:27
Using Punnet Squares
28:30
The Law of Independent Assortment
32:35
Monohybrid
32:38
Dihybrid
33:29
The Law of Independent Assortment
34:00
The Law of Independent Assortment, cont.
38:13
The Law of Independent Assortment: Punnet Squares
38:29
Meiosis and Mendel's Laws
43:38
Meiosis and Mendel's Laws
43:39
Test Crosses
49:07
Test Crosses Example
49:08
Probability: Multiplication Rule and the Addition Rule
53:39
Probability Overview
53:40
Independent Events & Multiplication Rule
55:40
Mutually Exclusive Events & Addition Rule
1:00:25
Incomplete Dominance, Codominance and Multiple Alleles
1:02:55
Incomplete Dominance
1:02:56
Incomplete Dominance, Codominance and Multiple Alleles
1:07:06
Codominance and Multiple Alleles
1:07:08
Polygenic Inheritance and Pleoitropy
1:10:19
Polygenic Inheritance and Pleoitropy
1:10:26
Epistasis
1:12:51
Example of Epistasis
1:12:52
Example 1: Genetic of Eye Color and Height
1:17:39
Example 2: Blood Type
1:21:57
Example 3: Pea Plants
1:25:09
Example 4: Coat Color
1:28:34
Linked Genes and Non-Mendelian Modes of Inheritance

39m 38s

Intro
0:00
Review of the Law of Independent Assortment
0:14
Review of the Law of Independent Assortment
0:24
Linked Genes
6:06
Linked Genes
6:07
Bateson & Pannett: Pea Plants
8:00
Crossing Over and Recombination
15:17
Crossing Over and Recombination
15:18
Extranuclear Genes
20:50
Extranuclear Genes
20:51
Cytoplasmic Genes
21:31
Genomic Imprinting
23:45
Genomic Imprinting
23:58
Methylation
24:43
Example 1: Recombination Frequencies & Linkage Map
27:07
Example 2: Linked Genes
28:39
Example 3: Match Terms to Correct Descriptions
36:46
Example 4: Leber's Optic Neuropathy
38:40
Sex-Linked Traits and Pedigree Analysis

43m 39s

Intro
0:00
Sex-Linked Traits
0:09
Human Chromosomes, XY, and XX
0:10
Thomas Morgan's Drosophila
1:44
X-Inactivation and Barr Bodies
14:48
X-Inactivation Overview
14:49
Calico Cats Example
17:04
Pedigrees
19:24
Definition and Example of Pedigree
19:25
Autosomal Dominant Inheritance
20:51
Example: Huntington's Disease
20:52
Autosomal Recessive Inheritance
23:04
Example: Cystic Fibrosis, Tay-Sachs Disease, and Phenylketonuria
23:05
X-Linked Recessive Inheritance
27:06
Example: Hemophilia, Duchene Muscular Dystrohpy, and Color Blindess
27:07
Example 1: Colorblind
29:48
Example 2: Pedigree
37:07
Example 3: Inheritance Pattern
39:54
Example 4: X-inactivation
41:17
Section 7: Evolution
Natural Selection

1h 3m 28s

Intro
0:00
Background
0:09
Work of Other Scientists
0:15
Aristotle
0:43
Carl Linnaeus
1:32
George Cuvier
2:47
James Hutton
4:10
Thomas Malthus
5:05
Jean-Baptiste Lamark
5:45
Darwin's Theory of Natural Selection
7:50
Evolution
8:00
Natural Selection
8:43
Charles Darwin & The Galapagos Islands
10:20
Genetic Variation
20:37
Mutations
20:38
Independent Assortment
21:04
Crossing Over
24:40
Random Fertilization
25:26
Natural Selection and the Peppered Moth
26:37
Natural Selection and the Peppered Moth
26:38
Types of Natural Selection
29:52
Directional Selection
29:55
Stabilizing Selection
32:43
Disruptive Selection
34:21
Sexual Selection
36:18
Sexual Dimorphism
37:30
Intersexual Selection
37:57
Intrasexual Selection
39:20
Evidence for Evolution
40:55
Paleontology: Fossil Record
41:30
Biogeography
45:35
Continental Drift
46:06
Pangaea
46:28
Marsupials
47:11
Homologous and Analogous Structure
50:10
Homologous Structure
50:12
Analogous Structure
53:21
Example 1: Genetic Variation & Natural Selection
56:15
Example 2: Types of Natural Selection
58:07
Example 3: Mechanisms By Which Genetic Variation is Maintained Within a Population
1:00:12
Example 4: Difference Between Homologous and Analogous Structures
1:01:28
Population Genetic and Evolution

53m 22s

Intro
0:00
Review of Natural Selection
0:12
Review of Natural Selection
0:13
Genetic Drift and Gene Flow
4:40
Definition of Genetic Drift
4:41
Example of Genetic Drift: Cholera Epidemic
5:15
Genetic Drift: Founder Effect
7:28
Genetic Drift: Bottleneck Effect
10:27
Gene Flow
13:00
Quantifying Genetic Variation
14:32
Average Heterozygosity
15:08
Nucleotide Variation
17:05
Maintaining Genetic Variation
18:12
Heterozygote Advantage
19:45
Example of Heterozygote Advantage: Sickle Cell Anemia
20:21
Diploidy
23:44
Geographic Variation
26:54
Frequency Dependent Selection and Outbreeding
28:15
Neutral Traits
30:55
The Hardy-Weinberg Equilibrium
31:11
The Hardy-Weinberg Equilibrium
31:49
The Hardy-Weinberg Conditions
32:42
The Hardy-Weinberg Equation
34:05
The Hardy-Weinberg Example
36:33
Example 1: Match Terms to Descriptions
42:28
Example 2: The Hardy-Weinberg Equilibrium
44:31
Example 3: The Hardy-Weinberg Equilibrium
49:10
Example 4: Maintaining Genetic Variation
51:30
Speciation and Patterns of Evolution

51m 2s

Intro
0:00
Early Life on Earth
0:08
Early Earth
0:09
1920's Oparin & Haldane
0:58
Abiogenesis
2:15
1950's Miller & Urey
2:45
Ribozymes
5:34
3.5 Billion Years Ago
6:39
2.5 Billion Years Ago
7:14
1.5 Billion Years Ago
7:41
Endosymbiosis
8:00
540 Million Years Ago: Cambrian Explosion
9:57
Gradualism and Punctuated Equilibrium
11:46
Gradualism
11:47
Punctuated Equilibrium
12:45
Adaptive Radiation
15:08
Adaptive Radiation
15:09
Example of Adaptive Radiation: Galapogos Islands
17:11
Convergent Evolution, Divergent Evolution, and Coevolution
18:30
Convergent Evolution
18:39
Divergent Evolution
21:30
Coevolution
23:49
Speciation
26:27
Definition and Example of Species
26:29
Reproductive Isolation: Prezygotive
27:49
Reproductive Isolation: Post zygotic
29:28
Allopatric Speciation
30:21
Allopatric Speciation & Geographic Isolation
30:28
Genetic Drift
31:31
Sympatric Speciation
34:10
Sympatric Speciation
34:11
Polyploidy & Autopolyploidy
35:12
Habitat Isolation
39:17
Temporal Isolation
41:27
Selection Selection
41:40
Example 1: Pattern of Evolution
42:53
Example 2: Sympatric Speciation
45:16
Example 3: Patterns of Evolution
48:08
Example 4: Patterns of Evolution
49:27
Section 8: Diversity of Life
Classification

1h 51s

Intro
0:00
Systems of Classification
0:07
Taxonomy
0:08
Phylogeny
1:04
Phylogenetics Tree
1:44
Cladistics
3:37
Classification of Organisms
5:31
Example of Carl Linnaeus System
5:32
Domains
9:26
Kingdoms: Monera, Protista, Plantae, Fungi, Animalia
9:27
Monera
10:06
Phylogentics Tree: Eurkarya, Bacteria, Archaea
11:58
Domain Eukarya
12:50
Domain Bacteria
15:43
Domain Bacteria
15:46
Pathogens
16:41
Decomposers
18:00
Domain Archaea
19:43
Extremophiles Archaea: Thermophiles and Halophiles
19:44
Methanogens
20:58
Phototrophs, Autotrophs, Chemotrophs and Heterotrophs
24:40
Phototrophs and Chemotrophs
25:02
Autotrophs and Heterotrophs
26:54
Photoautotrophs
28:50
Photoheterotrophs
29:28
Chemoautotrophs
30:06
Chemoheterotrophs
31:37
Domain Eukarya
32:40
Domain Eukarya
32:43
Plant Kingdom
34:28
Protists
35:48
Fungi Kingdom
37:06
Animal Kingdom
38:35
Body Symmetry
39:25
Lack Symetry
39:40
Radial Symmetry: Sea Aneome
40:15
Bilateral Symmetry
41:55
Cephalization
43:29
Germ Layers
44:54
Diploblastic Animals
45:18
Triploblastic Animals
45:25
Ectoderm
45:36
Endoderm
46:07
Mesoderm
46:41
Coelomates
47:14
Coelom
47:15
Acoelomate
48:22
Pseudocoelomate
48:59
Coelomate
49:31
Protosomes
50:46
Deuterosomes
51:20
Example 1: Domains
53:01
Example 2: Match Terms with Descriptions
56:00
Example 3: Kingdom Monera and Domain Archaea
57:50
Example 4: System of Classification
59:37
Bacteria

36m 46s

Intro
0:00
Comparison of Domain Archaea and Domain Bacteria
0:08
Overview of Archaea and Bacteria
0:09
Archaea vs. Bacteria: Nucleus, Organelles, and Organization of Genetic Material
1:45
Archaea vs. Bacteria: Cell Walls
2:20
Archaea vs. Bacteria: Number of Types of RNA Pol
2:29
Archaea vs. Bacteria: Membrane Lipids
2:53
Archaea vs. Bacteria: Introns
3:33
Bacteria: Pathogen
4:03
Bacteria: Decomposers and Fix Nitrogen
5:18
Bacteria: Aerobic, Anaerobic, Strict Anaerobes & Facultative Anaerobes
6:02
Phototrophs, Autotrophs, Heterotrophs and Chemotrophs
7:14
Phototrophs and Chemotrophs
7:50
Autotrophs and Heterotrophs
8:53
Photoautotrophs and Photoheterotrophs
10:15
Chemoautotroph and Chemoheterotrophs
11:07
Structure of Bacteria
12:21
Shapes: Cocci, Bacilli, Vibrio, and Spirochetes
12:26
Structures: Plasma Membrane and Cell Wall
14:23
Structures: Nucleoid Region, Plasmid, and Capsule Basal Apparatus, and Filament
15:30
Structures: Flagella, Basal Apparatus, Hook, and Filament
16:36
Structures: Pili, Fimbrae and Ribosome
18:00
Peptidoglycan: Gram + and Gram -
18:50
Bacterial Genomes and Reproduction
21:14
Bacterial Genomes
21:21
Reproduction of Bacteria
22:13
Transformation
23:26
Vector
24:34
Competent
25:15
Conjugation
25:53
Conjugation: F+ and R Plasmids
25:55
Example 1: Species
29:41
Example 2: Bacteria and Exchange of Genetic Material
32:31
Example 3: Ways in Which Bacteria are Beneficial to Other Organisms
33:48
Example 4: Domain Bacteria vs. Domain Archaea
34:53
Protists

1h 18m 48s

Intro
0:00
Classification of Protists
0:08
Classification of Protists
0:09
'Plant-like' Protists
2:06
'Animal-like' Protists
3:19
'Fungus-like' Protists
3:57
Serial Endosymbiosis Theory
5:15
Endosymbiosis Theory
5:33
Photosynthetic Protists
7:33
Life Cycles with a Diploid Adult
13:35
Life Cycles with a Diploid Adult
13:56
Life Cycles with a Haploid Adult
15:31
Life Cycles with a Haploid Adult
15:32
Alternation of Generations
17:22
Alternation of Generations: Multicellular Haploid & Diploid Phase
17:23
Plant-Like Protists
19:58
Euglenids
20:43
Dino Flagellates
22:57
Diatoms
26:07
Plant-Like Protists
28:44
Golden Algae
28:45
Brown Algeas
30:05
Plant-Like Protists
33:38
Red Algae
33:39
Green Algae
35:36
Green Algae: Chlamydomonus
37:44
Animal-Like Protists
40:04
Animal-Like Protists Overview
40:05
Sporozoans (Apicomplexans)
40:32
Alveolates
41:41
Sporozoans (Apicomplexans): Plasmodium & Malaria
42:59
Animal-Like Protists
48:44
Kinetoplastids
48:50
Example of Kinetoplastids: Trypanosomes & African Sleeping Sickness
49:30
Ciliate
50:42
Conjugation
53:16
Conjugation
53:26
Animal-Like Protists
57:08
Parabasilids
57:31
Diplomonads
59:06
Rhizopods
1:00:13
Forams
1:02:25
Radiolarians
1:03:28
Fungus-Like Protists
1:04:25
Fungus-Like Protists Overview
1:04:26
Slime Molds
1:05:15
Cellular Slime Molds: Feeding Stage
1:09:21
Oomycetes
1:11:15
Example 1: Alternation of Generations and Sexual Life Cycles
1:13:05
Example 2: Match Protists to Their Descriptions
1:14:12
Example 3: Three Structures that Protists Use for Motility
1:16:22
Example 4: Paramecium
1:17:04
Fungi

35m 24s

Intro
0:00
Introduction to Fungi
0:09
Introduction to Fungi
0:10
Mycologist
0:34
Examples of Fungi
0:45
Hyphae, Mycelia, Chitin, and Coencytic Fungi
2:26
Ancestral Protists
5:00
Role of Fungi in the Environment
5:35
Fungi as Decomposers
5:36
Mycorrrhiza
6:19
Lichen
8:52
Life Cycle of Fungi
11:32
Asexual Reproduction
11:33
Sexual Reproduction & Dikaryotic Cell
13:16
Chytridiomycota
18:12
Phylum Chytridiomycota
18:17
Zoospores
18:50
Zygomycota
19:07
Coenocytic & Zygomycota Life Cycle
19:08
Basidiomycota
24:27
Basidiomycota Overview
24:28
Basidiomycota Life Cycle
26:11
Ascomycota
28:00
Ascomycota Overview
28:01
Ascomycota Reproduction
28:50
Example 1: Fungi Fill in the Blank
31:02
Example 2: Name Two Roles Played by Fungi in the Environment
32:09
Example 3: Difference Between Diploid Cell and Dikaryon Cell
33:42
Example 4: Phylum of Fungi, Flagellated Spore, Coencytic
34:36
Invertebrates

1h 3m 3s

Intro
0:00
Porifera (Sponges)
0:33
Chordata
0:56
Porifera (Sponges): Sessile, Layers, Aceolomates, and Filter Feeders
1:24
Amoebocytes Cell
4:47
Choanocytes Cell
5:56
Sexual Reproduction
6:28
Cnidaria
8:05
Cnidaria Overview
8:06
Polyp & Medusa: Gastrovasular Cavity
8:29
Cnidocytes
9:42
Anthozoa
10:40
Cubozoa
11:23
Hydrozoa
11:53
Scyphoza
13:25
Platyhelminthes (Flatworms)
13:58
Flatworms: Tribloblastic, Bilateral Symmetry, and Cephalization
13:59
GI System
15:33
Excretory System
16:07
Nervous System
17:00
Turbellarians
17:36
Trematodes
18:42
Monageneans
21:32
Cestoda
21:55
Rotifera (Rotifers)
23:45
Rotifers: Digestive Tract, Pseudocoelem, and Stuctures
23:46
Reproduction: Parthenogenesis
25:33
Nematoda (Roundworms)
26:44
Nematoda (Roundworms)
26:45
Parasites: Pinworms & Hookworms
27:26
Annelida
28:36
Annelida Overview
28:37
Open Circulatory
29:21
Closed Circulatory
30:18
Nervous System
31:19
Excretory System
31:43
Oligochaete
32:07
Leeches
33:22
Polychaetes
34:42
Mollusca
35:26
Mollusca Features
35:27
Major Part 1: Visceral Mass
36:21
Major Part 2: Head-foot Region
36:49
Major Part 3: Mantle
37:13
Radula
37:49
Circulatory, Reproductive, Excretory, and Nervous System
38:14
Major Classes of Molluscs
39:12
Gastropoda
39:17
Polyplacophora
40:15
Bivales
40:41
Cephalopods
41:42
Arthropoda
43:35
Arthropoda Overview
43:36
Segmented Bodies
44:14
Exoskeleton
44:52
Jointed Appendages
45:28
Hemolyph, Excretory & Respiratory System
45:41
Myriapoda & Centipedes
47:15
Cheliceriforms
48:20
Crustcea
49:31
Herapoda
50:03
Echinodermata
52:59
Echinodermata
53:00
Watrer Vascular System
54:20
Selected Characteristics of Invertebrates
57:11
Selected Characteristics of Invertebrates
57:12
Example 1: Phylum Description
58:43
Example 2: Complex Animals
59:50
Example 3: Match Organisms to the Correct Phylum
1:01:03
Example 4: Phylum Arthropoda
1:02:01
Vertebrates

1h 7s

Intro
0:00
Phylum Chordata
0:06
Chordates Overview
0:07
Notochord and Dorsal Hollow Nerve Chord
1:24
Pharyngeal Clefts, Arches, and Post-anal Tail
3:41
Invertebrate Chordates
6:48
Lancelets
7:13
Tunicates
8:02
Hagfishes: Craniates
8:55
Vertebrate Chordates
10:41
Veterbrates Overview
10:42
Lampreys
11:00
Gnathostomes
12:20
Six Major Classes of Vertebrates
12:53
chondrichthyes
14:23
Chondrichthyes Overview
14:24
Ectothermic and Endothermic
14:42
Sharks: Lateral Line System, Neuromastsn, and Gills
15:27
Oviparous and Viviparous
17:23
Osteichthyes (Bony Fishes)
18:12
Osteichythes (Bony Fishes) Overview
18:13
Operculum
19:05
Swim Bladder
19:53
Ray-Finned Fishes
20:34
Lobe-Finned Fishes
20:58
Tetrapods
22:36
Tetrapods: Definition and Examples
22:37
Amphibians
23:53
Amphibians Overview
23:54
Order Urodela
25:51
Order Apoda
27:03
Order Anura
27:55
Reptiles
30:19
Reptiles Overview
30:20
Amniotes
30:37
Examples of Reptiles
32:46
Reptiles: Ectotherms, Gas Exchange, and Heart
33:40
Orders of Reptiles
34:17
Sphenodontia, Squamata, Testudines, and Crocodilia
34:21
Birds
36:09
Birds and Dinosaurs
36:18
Theropods
38:00
Birds: High Metabolism, Respiratory System, Lungs, and Heart
39:04
Birds: Endothermic, Bones, and Feathers
40:15
Mammals
42:33
Mammals Overview
42:35
Diaphragm and Heart
42:57
Diphydont
43:44
Synapsids
44:41
Monotremes
46:36
Monotremes
46:37
Marsupials
47:12
Marsupials: Definition and Examples
47:16
Convergent Evolution
48:09
Eutherians (Placental Mammals)
49:42
Placenta
49:43
Order Carnivora
50:48
Order Raodentia
51:00
Order Cetaceans
51:14
Primates
51:41
Primates Overview
51:42
Nails and Hands
51:58
Vision
52:51
Social Care for Young
53:28
Brain
53:43
Example 1: Distinguishing Characteristics of Chordates
54:33
Example 2: Match Description to Correct Term
55:56
Example 3: Bird's Anatomy
57:38
Example 4: Vertebrate Animal, Marine Environment, and Ectothermic
59:14
Section 9: Plants
Seedless Plants

34m 31s

Intro
0:00
Origin and Classification of Plants
0:06
Origin and Classification of Plants
0:07
Non-Vascular vs. Vascular Plants
1:29
Seedless Vascular & Seed Plants
2:28
Angiosperms & Gymnosperms
2:50
Alternation of Generations
3:54
Alternation of Generations
3:55
Bryophytes
7:58
Overview of Bryrophytes
7:59
Example: Moss Gametophyte
9:29
Example: Moss Sporophyte
9:50
Moss Life Cycle
10:12
Moss Life Cycle
10:13
Seedless Vascular Plants
13:23
Vascular Structures: Cell Walls, and Lignin
13:24
Homosporous
17:11
Heterosporous
17:48
Adaptations to Life on land
21:10
Adaptation 1: Cell Walls
21:38
Adaptation 2: Vascular Plants
21:59
Adaptation 3 : Xylem & Phloem
22:31
Adaptation 4: Seeds
23:07
Adaptation 5: Pollen
23:35
Adaptation 6: Stomata
24:45
Adaptation 7: Reduced Gametophyte Generation
25:32
Example 1: Bryophytes
26:39
Example 2: Sporangium, Lignin, Gametophyte, and Antheridium
28:34
Example 3: Adaptations to Life on Land
29:47
Example 4: Life Cycle of Plant
32:06
Plant Structure

1h 1m 21s

Intro
0:00
Plant Tissue
0:05
Dermal Tissue
0:15
Vascular Tissue
0:39
Ground Tissue
1:31
Cell Types in Plants
2:14
Parenchyma Cells
2:24
Collenchyma Cells
3:21
Sclerenchyma Cells
3:59
Xylem
5:04
Xylem: Tracheids and Vessel Elements
6:12
Gymnosperms vs. Angiosperms
7:53
Phloem
8:37
Phloem: Structures and Function
8:38
Sieve-Tube Elements
8:45
Companion Cells & Sieve Plates
9:11
Roots
10:08
Taproots & Fibrous
10:09
Aerial Roots & Prop Roots
11:41
Structures and Functions of Root: Dicot & Monocot
13:00
Pericyle
16:57
The Nitrogen Cylce
18:05
The Nitrogen Cycle
18:06
Mycorrhizae
24:20
Mycorrhizae
24:23
Ectomycorrhiza
26:03
Endomycorrhiza
26:25
Stems
26:53
Stems
26:54
Vascular Bundles of Monocots and Dicots
28:18
Leaves
29:48
Blade & Petiole
30:13
Upper Epidermis, Lower Epidermis & Cuticle
30:39
Ground Tissue, Palisade Mesophyll, Spongy Mesophyll
31:35
Stomata Pores
33:23
Guard Cells
34:15
Vascular Tissues: Vascular Bundles and Bundle Sheath
34:46
Stomata
36:12
Stomata & Gas Exchange
36:16
Guard Cells, Flaccid, and Turgid
36:43
Water Potential
38:03
Factors for Opening Stoma
40:35
Factors Causing Stoma to Close
42:44
Overview of Plant Growth
44:23
Overview of Plant Growth
44:24
Primary Plant Growth
46:19
Apical Meristems
46:25
Root Growth: Zone of Cell Division
46:44
Root Growth: Zone of Cell Elongation
47:35
Root Growth: Zone of Cell Differentiation
47:55
Stem Growth: Leaf Primodia
48:16
Secondary Plant Growth
48:48
Secondary Plant Growth Overview
48:59
Vascular Cambium: Secondary Xylem and Phloem
49:38
Cork Cambium: Periderm and Lenticels
51:10
Example 1: Leaf Structures
53:30
Example 2: List Three Types of Plant Tissue and their Major Functions
55:13
Example 3: What are Two Factors that Stimulate the Opening or Closing of Stomata?
56:58
Example 4: Plant Growth
59:18
Gymnosperms and Angiosperms

1h 1m 51s

Intro
0:00
Seed Plants
0:22
Sporopollenin
0:58
Heterosporous: Megasporangia
2:49
Heterosporous: Microsporangia
3:19
Gymnosperms
5:20
Gymnosperms
5:21
Gymnosperm Life Cycle
7:30
Gymnosperm Life Cycle
7:31
Flower Structure
15:15
Petal & Pollination
15:48
Sepal
16:52
Stamen: Anther, Filament
17:05
Pistill: Stigma, Style, Ovule, Ovary
17:55
Complete Flowers
20:14
Angiosperm Gametophyte Formation
20:47
Male Gametophyte: Microsporocytes, Microsporangia & Meiosis
20:57
Female Gametophyte: Megasporocytes & Meiosis
24:22
Double Fertilization
25:43
Double Fertilization: Pollen Tube and Endosperm
25:44
Angiosperm Life Cycle
29:43
Angiosperm Life Cycle
29:48
Seed Structure and Development
33:37
Seed Structure and Development
33:38
Pollen Dispersal
37:53
Abiotic
38:28
Biotic
39:30
Prevention of Self-Pollination
40:48
Mechanism 1
41:08
Mechanism 2: Dioecious
41:37
Mechanism 3
42:32
Self-Incompatibility
43:08
Gametophytic Self-Incompatibility
44:38
Sporophytic Self-Incompatibility
46:50
Asexual Reproduction
48:33
Asexual Reproduction & Vegetative Propagation
48:34
Graftiry
50:19
Monocots and Dicots
51:34
Monocots vs.Dicots
51:35
Example 1: Double Fertilization
54:43
Example 2: Mechanisms of Self-Fertilization
56:02
Example 3: Monocots vs. Dicots
58:11
Example 4: Flower Structures
1:00:11
Transport of Nutrients and Water in Plants

40m 30s

Intro
0:00
Review of Plant Cell Structure
0:14
Cell Wall, Plasma Membrane, Middle lamella, and Cytoplasm
0:15
Plasmodesmata, Chloroplasts, and Central Vacuole
3:24
Water Absorption by Plants
4:28
Root Hairs and Mycorrhizae
4:30
Osmosis and Water Potential
5:41
Apoplast and Symplast Pathways
10:01
Apoplast and Symplast Pathways
10:02
Xylem Structure
21:02
Tracheids and Vessel Elements
21:03
Bulk Flow
23:00
Transpiration
23:26
Cohesion
25:10
Adhesion
26:10
Phloem Structure
27:25
Pholem
27:26
Sieve-Tube Elements
27:48
Companion Cells
28:17
Translocation
28:42
Sugar Source and Sugar Sink Overview
28:43
Example of Sugar Sink
30:01
Example of Sugar Source
30:48
Example 1: Match the Following Terms to their Description
33:17
Example 2: Water Potential
34:58
Example 3: Bulk Flow
36:56
Example 4: Sugar Sink and Sugar Source
38:33
Plant Hormones and Tropisms

48m 10s

Intro
0:00
Plant Cell Signaling
0:17
Plant Cell Signaling Overview
0:18
Step 1: Reception
1:03
Step 2: Transduction
2:32
Step 3: Response
2:58
Second Messengers
3:52
Protein Kinases
4:42
Auxins
6:14
Auxins
6:18
Indoleacetic Acid (IAA)
7:23
Cytokinins and Gibberellins
11:10
Cytokinins: Apical Dominance & Delay of Aging
11:16
Gibberellins: 'Bolting'
13:51
Ethylene
15:33
Ethylene
15:34
Positive Feedback
15:46
Leaf Abscission
18:05
Mechanical Stress: Triple Response
19:36
Abscisic Acid
21:10
Abscisic Acid
21:15
Tropisms
23:11
Positive Tropism
23:50
Negative Tropism
24:07
Statoliths
26:21
Phytochromes and Photoperiodism
27:48
Phytochromes: PR and PFR
27:56
Circadian Rhythms
32:06
Photoperiod
33:13
Photoperiodism
33:38
Gerner & Allard
34:35
Short-Day Plant
35:22
Long-Day Plant
37:00
Example 1: Plant Hormones
41:28
Example 2: Cytokinins & Gibberellins
43:00
Example 3: Match the Following Terms to their Description
44:46
Example 4: Hormones & Cell Response
46:14
Section 10: Animal Structure and Physiology
The Respiratory System

48m 14s

Intro
0:00
Gas Exchange in Animals
0:17
Respiration
0:19
Ventilation
1:09
Characteristics of Respiratory Surfaces
1:53
Gas Exchange in Aquatic Animals
3:05
Simple Aquatic Animals
3:06
Gills & Gas Exchange in Complex Aquatic Animals
3:49
Countercurrent Exchange
6:12
Gas Exchange in Terrestrial Animals
13:46
Earthworms
14:07
Internal Respiratory
15:35
Insects
16:55
Circulatory Fluid
19:06
The Human Respiratory System
21:21
Nasal Cavity, Pharynx, Larynx, and Epiglottis
21:50
Bronchus, Bronchiole, Trachea, and Alveoli
23:38
Pulmonary Surfactants
28:05
Circulatory System: Hemoglobin
29:13
Ventilation
30:28
Inspiration/Expiration: Diaphragm, Thorax, and Abdomen
30:33
Breathing Control Center: Regulation of pH
34:34
Example 1: Tracheal System in Insects
39:08
Example 2: Countercurrent Exchange
42:09
Example 3: Respiratory System
44:10
Example 4: Diaphragm, Ventilation, pH, and Regulation of Breathing
45:31
The Circulatory System

1h 20m 21s

Intro
0:00
Types of Circulatory Systems
0:07
Circulatory System Overview
0:08
Open Circulatory System
3:19
Closed Circulatory System
5:58
Blood Vessels
7:51
Arteries
8:16
Veins
10:01
Capillaries
12:35
Vasoconstriction and Vasodilation
13:10
Vasoconstriction
13:11
Vasodilation
13:47
Thermoregulation
14:32
Blood
15:53
Plasma
15:54
Cellular Component: Red Blood Cells
17:41
Cellular Component: White Blood Cells
20:18
Platelets
21:14
Blood Types
21:35
Clotting
27:04
Blood, Fibrin, and Clotting
27:05
Hemophilia
30:26
The Heart
31:09
Structures and Functions of the Heart
31:19
Pulmonary and Systemic Circulation
40:20
Double Circuit: Pulmonary Circuit and Systemic Circuit
40:21
The Cardiac Cycle
42:35
The Cardiac Cycle
42:36
Autonomic Nervous System
50:00
Hemoglobin
51:25
Hemoglobin & Hemocyanin
51:26
Oxygen-Hemoglobin Dissociation Curve
55:30
Oxygen-Hemoglobin Dissociation Curve
55:44
Transport of Carbon Dioxide
1:06:31
Transport of Carbon Dioxide
1:06:37
Example 1: Pathway of Blood
1:12:48
Example 2: Oxygenated Blood, Pacemaker, and Clotting
1:15:24
Example 3: Vasodilation and Vasoconstriction
1:16:19
Example 4: Oxygen-Hemoglobin Dissociation Curve
1:18:13
The Digestive System

56m 11s

Intro
0:00
Introduction to Digestion
0:07
Digestive Process
0:08
Intracellular Digestion
0:45
Extracellular Digestion
1:44
Types of Digestive Tracts
2:08
Gastrovascular Cavity
2:09
Complete Gastrointestinal Tract (Alimentary Canal)
3:54
'Crop'
4:43
The Human Digestive System
5:41
Structures of the Human Digestive System
5:47
The Oral Cavity and Esophagus
7:47
Mechanical & Chemical Digestion
7:48
Salivary Glands
8:55
Pharynx and Epigloltis
9:43
Peristalsis
11:35
The Stomach
12:57
Lower Esophageal Sphincter
13:00
Gastric Gland, Parietal Cells, and Pepsin
14:32
Mucus Cell
15:48
Chyme & Pyloric Sphincter
17:32
The Pancreas
18:31
Endocrine and Exocrine
19:03
Amylase
20:05
Proteases
20:51
Lipases
22:20
The Liver
23:08
The Liver & Production of Bile
23:09
The Small Intestine
24:37
The Small Intestine
24:38
Duodenum
27:44
Intestinal Enzymes
28:41
Digestive Enzyme
33:30
Site of Production: Mouth
33:43
Site of Production: Stomach
34:03
Site of Production: Pancreas
34:16
Site of Production: Small Intestine
36:18
Absorption of Nutrients
37:51
Absorption of Nutrients: Jejunum and Ileum
37:52
The Large Intestine
44:52
The Large Intestine: Colon, Cecum, and Rectum
44:53
Regulation of Digestion by Hormones
46:55
Gastrin
47:21
Secretin
47:50
Cholecystokinin (CCK)
48:00
Example 1: Intestinal Cell, Bile, and Digestion of Fats
48:29
Example 2: Matching
51:06
Example 3: Digestion and Absorption of Starch
52:18
Example 4: Large Intestine and Gastric Fluids
54:52
The Excretory System

1h 12m 14s

Intro
0:00
Nitrogenous Wastes
0:08
Nitrogenous Wastes Overview
0:09
NH3
0:39
Urea
2:43
Uric Acid
3:31
Osmoregulation
4:56
Osmoregulation
5:05
Saltwater Fish vs. Freshwater Fish
8:58
Types of Excretory Systems
13:42
Protonephridia
13:50
Metanephridia
16:15
Malpighian Tubule
19:05
The Human Excretory System
20:45
Kidney, Ureter, bladder, Urethra, Medula, and Cortex
20:53
Filtration, Reabsorption and Secretion
22:53
Filtration
22:54
Reabsorption
24:16
Secretion
25:20
The Nephron
26:23
The Nephron
26:24
The Nephron, cont.
41:45
Descending Loop of Henle
41:46
Ascending Loop of Henle
45:45
Antidiuretic Hormone
54:30
Antidiuretic Hormone (ADH)
54:31
Aldosterone
58:58
Aldosterone
58:59
Example 1: Nephron of an Aquatic Mammal
1:04:21
Example 2: Uric Acid & Saltwater Fish
1:06:36
Example 3: Nephron
1:09:14
Example 4: Gastrointestinal Infection
1:10:41
The Endocrine System

51m 12s

Intro
0:00
The Endocrine System Overview
0:07
Thyroid
0:08
Exocrine
1:56
Pancreas
2:44
Paracrine Signaling
4:06
Pheromones
5:15
Mechanisms of Hormone Action
6:06
Reception, Transduction, and Response
7:06
Classes of Hormone
10:05
Negative Feedback: Testosterone Example
12:16
The Pancreas
15:11
The Pancreas & islets of Langerhan
15:12
Insulin
16:02
Glucagon
17:28
The Anterior Pituitary
19:25
Thyroid Stimulating Hormone
20:24
Adrenocorticotropic Hormone
21:16
Follide Stimulating Hormone
22:04
Luteinizing Hormone
22:45
Growth Hormone
23:45
Prolactin
24:24
Melanocyte Stimulating Hormone
24:55
The Hypothalamus and Posterior Pituitary
25:45
Hypothalamus, Oxytocin, Antidiuretic Hormone (ADH), and Posterior Pituitary
25:46
The Adrenal Glands
31:20
Adrenal Cortex
31:56
Adrenal Medulla
34:29
The Thyroid
35:54
Thyroxine
36:09
Calcitonin
40:27
The Parathyroids
41:44
Parathyroids Hormone (PTH)
41:45
The Ovaries and Testes
43:32
Estrogen, Progesterone, and Testosterone
43:33
Example 1: Match the Following Hormones with their Descriptions
45:38
Example 2: Pancreas, Endocrine Organ & Exocrine Organ
47:06
Example 3: Insulin and Glucagon
48:28
Example 4: Increased Level of Cortisol in Blood
50:25
The Nervous System

1h 10m 38s

Intro
0:00
Types of Nervous Systems
0:28
Nerve Net
0:37
Flatworm
1:07
Cephalization
1:52
Arthropods
2:44
Echinoderms
3:11
Nervous System Organization
3:40
Nervous System Organization Overview
3:41
Automatic Nervous System: Sympathetic & Parasympathetic
4:42
Neuron Structure
6:57
Cell Body & Dendrites
7:16
Axon & Axon Hillock
8:20
Synaptic Terminals, Mylenin, and Nodes of Ranvier
9:01
Pre-synaptic and Post-synaptic Cells
10:16
Pre-synaptic Cells
10:17
Post-synaptic Cells
11:05
Types of Neurons
11:50
Sensory Neurons
11:54
Motor Neurons
13:12
Interneurons
14:24
Resting Potential
15:14
Membrane Potential
15:25
Resting Potential: Chemical Gradient
16:06
Resting Potential: Electrical Gradient
19:18
Gated Ion Channels
24:40
Voltage-Gated & Ligand-Gated Ion Channels
24:48
Action Potential
30:09
Action Potential Overview
30:10
Step 1
32:07
Step 2
32:17
Step 3
33:12
Step 4
35:14
Step 5
36:39
Action Potential Transmission
39:04
Action Potential Transmission
39:05
Speed of Conduction
41:19
Saltatory Conduction
42:58
The Synapse
44:17
The Synapse: Presynaptic & Postsynaptic Cell
44:31
Examples of Neurotransmitters
50:05
Brain Structure
51:57
Meniges
52:19
Cerebrum
52:56
Corpus Callosum
53:13
Gray & White Matter
53:38
Cerebral Lobes
55:35
Cerebellum
56:00
Brainstem
56:30
Medulla
56:51
Pons
57:22
Midbrain
57:55
Thalamus
58:25
Hypothalamus
58:58
Ventricles
59:51
The Spinal Cord
1:00:29
Sensory Stimuli
1:00:30
Reflex Arc
1:01:41
Example 1: Automatic Nervous System
1:04:38
Example 2: Synaptic Terminal and the Release of Neurotransmitters
1:06:22
Example 3: Volted-Gated Ion Channels
1:08:00
Example 4: Neuron Structure
1:09:26
Musculoskeletal System

39m 29s

Intro
0:00
Skeletal System Types and Function
0:30
Skeletal System
0:31
Exoskeleton
1:34
Endoskeleton
2:32
Skeletal System Components
2:55
Bone
3:06
Cartilage
5:04
Tendons
6:18
Ligaments
6:34
Skeletal Muscle
6:52
Skeletal Muscle
7:24
Sarcomere
9:50
The Sliding Filament Theory
13:12
The Sliding Filament Theory: Muscle Contraction
13:13
The Neuromuscular Junction
17:24
The Neuromuscular Junction: Motor Neuron & Muscle Fiber
17:26
Sarcolemma, Sarcoplasmic
21:54
Tropomyosin & Troponin
23:35
Summation and Tetanus
25:26
Single Twitch, Summation of Two Twitches, and Tetanus
25:27
Smooth Muscle
28:50
Smooth Muscle
28:58
Cardiac Muscle
30:40
Cardiac Muscle
30:42
Summary of Muscle Types
32:07
Summary of Muscle Types
32:08
Example 1: Contraction and Skeletal Muscle
33:15
Example 2: Skeletal Muscle and Smooth Muscle
36:23
Example 3: Muscle Contraction, Bone, and Nonvascularized Connective Tissue
37:31
Example 4: Sarcomere
38:17
The Immune System

1h 24m 28s

Intro
0:00
The Lymphatic System
0:16
The Lymphatic System Overview
0:17
Function 1
1:23
Function 2
2:27
Barrier Defenses
3:41
Nonspecific vs. Specific Immune Defenses
3:42
Barrier Defenses
5:12
Nonspecific Cellular Defenses
7:50
Nonspecific Cellular Defenses Overview
7:53
Phagocytes
9:29
Neutrophils
11:43
Macrophages
12:15
Natural Killer Cells
12:55
Inflammatory Response
14:19
Complement
18:16
Interferons
18:40
Specific Defenses - Acquired Immunity
20:12
T lymphocytes and B lymphocytes
20:13
B Cells
23:35
B Cells & Humoral Immunity
23:41
Clonal Selection
29:50
Clonal Selection
29:51
Primary Immune Response
34:28
Secondary Immune Response
35:31
Cytotoxic T Cells
38:41
Helper T Cells
39:20
Major Histocompatibility Complex Molecules
40:44
Major Histocompatibility Complex Molecules
40:55
Helper T Cells
52:36
Helper T Cells
52:37
Mechanisms of Antibody Action
59:00
Mechanisms of Antibody Action
59:01
Opsonization
1:00:01
Complement System
1:01:57
Classes of Antibodies
1:02:45
IgM
1:03:01
IgA
1:03:17
IgG
1:03:53
IgE
1:04:10
Passive and Active Immunity
1:05:00
Passive Immunity
1:05:01
Active Immunity
1:07:49
Recognition of Self and Non-Self
1:09:32
Recognition of Self and Non-Self
1:09:33
Self-Tolerance & Autoimmune Diseases
1:10:50
Immunodeficiency
1:13:27
Immunodeficiency
1:13:28
Chemotherapy
1:13:56
AID
1:14:27
Example 1: Match the Following Terms with their Descriptions
1:15:26
Example 2: Three Components of Non-specific Immunity
1:17:59
Example 3: Immunodeficient
1:21:19
Example 4: Self-tolerance and Autoimmune Diseases
1:23:07
Section 11: Animal Reproduction and Development
Reproduction

1h 1m 41s

Intro
0:00
Asexual Reproduction
0:17
Fragmentation
0:53
Fission
1:54
Parthenogenesis
2:38
Sexual Reproduction
4:00
Sexual Reproduction
4:01
Hermaphrodite
8:08
The Male Reproduction System
8:54
Seminiferous Tubules & Leydig Cells
8:55
Epididymis
9:48
Seminal Vesicle
11:19
Bulbourethral
12:37
The Female Reproductive System
13:25
Ovaries
13:28
Fallopian
14:50
Endometrium, Uterus, Cilia, and Cervix
15:03
Mammary Glands
16:44
Spermatogenesis
17:08
Spermatogenesis
17:09
Oogenesis
21:01
Oogenesis
21:02
The Menstrual Cycle
27:56
The Menstrual Cycle: Ovarian and Uterine Cycle
27:57
Summary of the Ovarian and Uterine Cycles
42:54
Ovarian
42:55
Uterine
44:51
Oxytocin and Prolactin
46:33
Oxytocin
46:34
Prolactin
47:00
Regulation of the Male Reproductive System
47:28
Hormones: GnRH, LH, FSH, and Testosterone
47:29
Fertilization
50:11
Fertilization
50:12
Structures of Egg
50:28
Acrosomal Reaction
51:36
Cortical Reaction
53:09
Example 1: List Three Differences between Spermatogenesis and oogenesis
55:36
Example 2: Match the Following Terms to their Descriptions
57:34
Example 3: Pregnancy and the Ovarian Cycle
58:44
Example 4: Hormone
1:00:43
Development

50m 5s

Intro
0:00
Cleavage
0:31
Cleavage
0:32
Meroblastic
2:06
Holoblastic Cleavage
3:23
Protostomes
4:34
Deuterostomes
5:13
Totipotent
5:52
Blastula Formation
6:42
Blastula
6:46
Gastrula Formation
8:12
Deuterostomes
11:02
Protostome
11:44
Ectoderm
12:17
Mesoderm
12:55
Endoderm
13:40
Cytoplasmic Determinants
15:19
Cytoplasmic Determinants
15:23
The Bird Embryo
22:52
Cleavage
23:35
Blastoderm
23:55
Primitive Streak
25:38
Migration and Differentiation
27:09
Extraembryonic Membranes
28:33
Extraembryonic Membranes
28:34
Chorion
30:02
Yolk Sac
30:36
Allantois
31:04
The Mammalian Embryo
32:18
Cleavage
32:28
Blastocyst
32:44
Trophoblast
34:37
Following Implantation
35:48
Organogenesis
37:04
Organogenesis, Notochord and Neural Tube
37:05
Induction
40:15
Induction
40:39
Fate Mapping
41:40
Example 1: Processes and Stages of Embryological Development
42:49
Example 2: Transplanted Cells
44:33
Example 3: Germ Layer
46:41
Example 4: Extraembryonic Membranes
47:28
Section 12: Animal Behavior
Animal Behavior

47m 48s

Intro
0:00
Introduction to Animal Behavior
0:05
Introduction to Animal Behavior
0:06
Ethology
1:04
Proximate Cause & Ultimate Cause
1:46
Fixed Action Pattern
3:07
Sign Stimulus
3:40
Releases and Example
3:55
Exploitation and Example
7:23
Learning
8:56
Habituation, Associative Learning, and Imprinting
8:57
Habituation
10:03
Habituation: Definition and Example
10:04
Associative Learning
11:47
Classical
12:19
Operant Conditioning
13:40
Positive & Negative Reinforcement
14:59
Positive & Negative Punishment
16:13
Extinction
17:28
Imprinting
17:47
Imprinting: Definition and Example
17:48
Social Behavior
20:12
Cooperation
20:38
Agonistic
21:37
Dorminance Heirarchies
23:23
Territoriality
24:08
Altruism
24:55
Communication
26:56
Communication
26:57
Mating
32:38
Mating Overview
32:40
Promiscuous
33:13
Monogamous
33:32
Polygamous
33:48
Intrasexual
34:22
Intersexual Selection
35:08
Foraging
36:08
Optimal Foraging Model
36:39
Foraging
37:47
Movement
39:12
Kinesis
39:20
Taxis
40:17
Migration
40:54
Lunar Cycles
42:02
Lunar Cycles
42:08
Example 1: Types of Conditioning
43:19
Example 2: Match the Following Terms to their Descriptions
44:12
Example 3: How is the Optimal Foraging Model Used to Explain Foraging Behavior
45:47
Example 4: Learning
46:54
Section 13: Ecology
Biomes

58m 49s

Intro
0:00
Ecology
0:08
Ecology
0:14
Environment
0:22
Integrates
1:41
Environment Impacts
2:20
Population and Distribution
3:20
Population
3:21
Range
4:50
Potential Range
5:10
Abiotic
5:46
Biotic
6:22
Climate
7:55
Temperature
8:40
Precipitation
10:00
Wind
10:37
Sunlight
10:54
Macroclimates & Microclimates
11:31
Other Abiotic Factors
12:20
Geography
12:28
Water
13:17
Soil and Rocks
13:48
Sunlight
14:42
Sunlight
14:43
Seasons
15:43
June Solstice, December Solstice, March Equinox, and September Equinox
15:44
Tropics
19:00
Seasonability
19:39
Wind and Weather Patterns
20:44
Vertical Circulation
20:51
Surface Wind Patterns
25:18
Local Climate Effects
26:51
Local Climate Effects
26:52
Terrestrial Biomes
30:04
Biome
30:05
Forest
31:02
Tropical Forest
32:00
Tropical Forest
32:01
Temperate Broadleaf Forest
32:55
Temperate Broadleaf Forest
32:56
Coniferous/Taiga Forest
34:10
Coniferous/Taiga Forest
34:11
Desert
36:05
Desert
36:06
Grassland
37:45
Grassland
37:46
Tundra
40:09
Tundra
40:10
Freshwater Biomes
42:25
Freshwater Biomes: Zones
42:27
Eutrophic Lakes
44:24
Oligotrophic Lakes
45:01
Lakes Turnover
46:03
Rivers
46:51
Wetlands
47:40
Estuary
48:11
Marine Biomes
48:45
Marine Biomes: Zones
48:46
Example 1: Diversity of Life
52:18
Example 2: Marine Biome
53:08
Example 3: Season
54:20
Example 4: Biotic vs. Abiotic
55:54
Population

41m 16s

Intro
0:00
Population
0:07
Size 'N'
0:16
Density
0:41
Dispersion
1:01
Measure Population: Count Individuals, Sampling, and Proxymeasure
2:26
Mortality
7:29
Mortality and Survivorship
7:30
Age Structure Diagrams
11:52
Expanding with Rapid Growth, Expanding, and Stable
11:58
Population Growth
15:39
Biotic Potential & Exponential Growth
15:43
Logistic Population Growth
19:07
Carrying Capacity (K)
19:18
Limiting Factors
20:55
Logistic Model and Oscillation
22:55
Logistic Model and Oscillation
22:56
Changes to the Carrying Capacity
24:36
Changes to the Carrying Capacity
24:37
Growth Strategies
26:07
'r-selected' or 'r-strategist'
26:23
'K-selected' or 'K-strategist'
27:47
Human Population
30:15
Human Population and Exponential Growth
30:21
Case Study - Lynx and Hare
31:54
Case Study - Lynx and Hare
31:55
Example 1: Estimating Population Size
34:35
Example 2: Population Growth
36:45
Example 3: Carrying Capacity
38:17
Example 4: Types of Dispersion
40:15
Communities

1h 6m 26s

Intro
0:00
Community
0:07
Ecosystem
0:40
Interspecific Interactions
1:14
Competition
2:45
Competition Overview
2:46
Competitive Exclusion
3:57
Resource Partitioning
4:45
Character Displacement
6:22
Predation
7:46
Predation
7:47
True Predation
8:05
Grazing/ Herbivory
8:39
Predator Adaptation
10:13
Predator Strategies
10:22
Physical Features
11:02
Prey Adaptation
12:14
Prey Adaptation
12:23
Aposematic Coloration
13:35
Batesian Mimicry
14:32
Size
15:42
Parasitism
16:48
Symbiotic Relationship
16:54
Ectoparasites
18:31
Endoparasites
18:53
Hyperparisitism
19:21
Vector
20:08
Parasitoids
20:54
Mutualism
21:23
Resource - Resource mutualism
21:34
Service - Resource Mutualism
23:31
Service - Service Mutualism: Obligate & Facultative
24:23
Commensalism
26:01
Commensalism
26:03
Symbiosis
27:31
Trophic Structure
28:35
Producers & Consumers: Autotrophs & Heterotrophs
28:36
Food Chain
33:26
Producer & Consumers
33:38
Food Web
39:01
Food Web
39:06
Significant Species within Communities
41:42
Dominant Species
41:50
Keystone Species
42:44
Foundation Species
43:41
Community Dynamics and Disturbances
44:31
Disturbances
44:33
Duration
47:01
Areal Coverage
47:22
Frequency
47:48
Intensity
48:04
Intermediate Level of Disturbance
48:20
Ecological Succession
50:29
Primary and Secondary Ecological Succession
50:30
Example 1: Competition Situation & Outcome
57:18
Example 2: Food Chains
1:00:08
Example 3: Ecological Units
1:02:44
Example 4: Disturbances & Returning to the Original Climax Community
1:04:30
Energy and Ecosystems

57m 42s

Intro
0:00
Ecosystem: Biotic & Abiotic Components
0:15
First Law of Thermodynamics & Energy Flow
0:40
Gross Primary Productivity (GPP)
3:52
Net Primary Productivity (NPP)
4:50
Biogeochemical Cycles
7:16
Law of Conservation of Mass & Biogeochemical Cycles
7:17
Water Cycle
10:55
Water Cycle
10:57
Carbon Cycle
17:52
Carbon Cycle
17:53
Nitrogen Cycle
22:40
Nitrogen Cycle
22:41
Phosphorous Cycle
29:34
Phosphorous Cycle
29:35
Climate Change
33:20
Climate Change
33:21
Eutrophication
39:38
Nitrogen
40:34
Phosphorous
41:29
Eutrophication
42:55
Example 1: Energy and Ecosystems
45:28
Example 2: Atmospheric CO2
48:44
Example 3: Nitrogen Cycle
51:22
Example 4: Conversion of a Forest near a Lake to Farmland
53:20
Section 14: Laboratory Review
Laboratory Review

2h 4m 30s

Intro
0:00
Lab 1: Diffusion and Osmosis
0:09
Lab 1: Diffusion and Osmosis
0:10
Lab 1: Water Potential
11:55
Lab 1: Water Potential
11:56
Lab 2: Enzyme Catalysis
18:30
Lab 2: Enzyme Catalysis
18:31
Lab 3: Mitosis and Meiosis
27:40
Lab 3: Mitosis and Meiosis
27:41
Lab 3: Mitosis and Meiosis
31:50
Ascomycota Life Cycle
31:51
Lab 4: Plant Pigments and Photosynthesis
40:36
Lab 4: Plant Pigments and Photosynthesis
40:37
Lab 5: Cell Respiration
49:56
Lab 5: Cell Respiration
49:57
Lab 6: Molecular Biology
55:06
Lab 6: Molecular Biology & Transformation 1st Part
55:07
Lab 6: Molecular Biology
1:01:16
Lab 6: Molecular Biology 2nd Part
1:01:17
Lab 7: Genetics of Organisms
1:07:32
Lab 7: Genetics of Organisms
1:07:33
Lab 7: Chi-square Analysis
1:13:00
Lab 7: Chi-square Analysis
1:13:03
Lab 8: Population Genetics and Evolution
1:20:41
Lab 8: Population Genetics and Evolution
1:20:42
Lab 9: Transpiration
1:24:02
Lab 9: Transpiration
1:24:03
Lab 10: Physiology of the Circulatory System
1:31:05
Lab 10: Physiology of the Circulatory System
1:31:06
Lab 10: Temperature and Metabolism in Ectotherms
1:38:25
Lab 10: Temperature and Metabolism in Ectotherms
1:38:30
Lab 11: Animal Behavior
1:40:52
Lab 11: Animal Behavior
1:40:53
Lab 12: Dissolved Oxygen & Aquatic Primary Productivity
1:45:36
Lab 12: Dissolved Oxygen & Aquatic Primary Productivity
1:45:37
Lab 12: Primary Productivity
1:49:06
Lab 12: Primary Productivity
1:49:07
Example 1: Chi-square Analysis
1:56:31
Example 2: Mitosis
1:59:28
Example 3: Transpiration of Plants
2:00:27
Example 4: Population Genetic
2:01:16
Section 15: The AP Biology Test
Understanding the Basics

13m 2s

Intro
0:00
AP Biology Structure
0:18
Section I
0:31
Section II
1:16
Scoring
2:04
The Four 'Big Ideas'
3:51
Process of Evolution
4:37
Biological Systems Utilize
4:44
Living Systems
4:55
Biological Systems Interact
5:03
Items to Bring to the Test
7:56
Test Taking Tips
9:53
Section 16: Practice Test (Barron's 4th Edition)
AP Biology Practice Exam: Section I, Part A, Multiple Choice Questions 1-31

1h 4m 29s

Intro
0:00
AP Biology Practice Exam
0:14
Multiple Choice 1
0:40
Multiple Choice 2
2:27
Multiple Choice 3
4:30
Multiple Choice 4
6:43
Multiple Choice 5
9:27
Multiple Choice 6
11:32
Multiple Choice 7
12:54
Multiple Choice 8
14:42
Multiple Choice 9
17:06
Multiple Choice 10
18:42
Multiple Choice 11
20:49
Multiple Choice 12
23:23
Multiple Choice 13
26:20
Multiple Choice 14
27:52
Multiple Choice 15
28:44
Multiple Choice 16
33:07
Multiple Choice 17
35:31
Multiple Choice 18
39:43
Multiple Choice 19
40:37
Multiple Choice 20
42:47
Multiple Choice 21
45:58
Multiple Choice 22
49:49
Multiple Choice 23
53:44
Multiple Choice 24
55:12
Multiple Choice 25
55:59
Multiple Choice 26
56:50
Multiple Choice 27
58:08
Multiple Choice 28
59:54
Multiple Choice 29
1:01:36
Multiple Choice 30
1:02:31
Multiple Choice 31
1:03:50
AP Biology Practice Exam: Section I, Part A, Multiple Choice Questions 32-63

50m 44s

Intro
0:00
AP Biology Practice Exam
0:14
Multiple Choice 32
0:27
Multiple Choice 33
4:14
Multiple Choice 34
5:12
Multiple Choice 35
6:51
Multiple Choice 36
10:46
Multiple Choice 37
11:27
Multiple Choice 38
12:17
Multiple Choice 39
13:49
Multiple Choice 40
17:02
Multiple Choice 41
18:27
Multiple Choice 42
19:35
Multiple Choice 43
21:10
Multiple Choice 44
23:35
Multiple Choice 45
25:00
Multiple Choice 46
26:20
Multiple Choice 47
28:40
Multiple Choice 48
30:14
Multiple Choice 49
31:24
Multiple Choice 50
32:45
Multiple Choice 51
33:41
Multiple Choice 52
34:40
Multiple Choice 53
36:12
Multiple Choice 54
38:06
Multiple Choice 55
38:37
Multiple Choice 56
40:00
Multiple Choice 57
41:18
Multiple Choice 58
43:12
Multiple Choice 59
44:25
Multiple Choice 60
45:02
Multiple Choice 61
46:10
Multiple Choice 62
47:54
Multiple Choice 63
49:01
AP Biology Practice Exam: Section I, Part B, Grid In

21m 52s

Intro
0:00
AP Biology Practice Exam
0:17
Grid In Question 1
0:29
Grid In Question 2
3:49
Grid In Question 3
11:04
Grid In Question 4
13:18
Grid In Question 5
17:01
Grid In Question 6
19:30
AP Biology Practice Exam: Section II, Long Free Response Questions

31m 22s

Intro
0:00
AP Biology Practice Exam
0:18
Free Response 1
0:29
Free Response 2
20:47
AP Biology Practice Exam: Section II, Short Free Response Questions

24m 41s

Intro
0:00
AP Biology Practice Exam
0:15
Free Response 3
0:26
Free Response 4
5:21
Free Response 5
8:25
Free Response 6
11:38
Free Response 7
14:48
Free Response 8
22:14
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of AP Biology
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books & Services

Lecture Comments (5)

2 answers

Last reply by: Nicholas Elias
Tue Nov 19, 2013 10:32 PM

Post by Nicholas Elias on October 21, 2013

Hi Dr. Eaton,

This might be alitte off topic but for the retrovirus, being part of the host cell's genome and using it's machinery I would assume that it will become dependent on the rate of the host cell's mitotic cycle (cells that reproduce more rapidly will favor the retrovirus) as well. With that in mind, I have also read that some cancers can be caused by viruses. It would make sense then that maybe some viruses have ways of hijacking a cells growth regulation genes maybe???? If it can get an otherwise slow growing cell to start reproducing uncontrollably then it will be able to replicate rapidly as well. Not sure if I'm way off or not.

1 answer

Last reply by: Dr Carleen Eaton
Sun Apr 17, 2011 5:00 PM

Post by Billy Jay on April 12, 2011

I'm having trouble trying to figure out how ssRNA containing viruses transcribe themselves.

Let's say you have: (-) sense, ssRNA virus
Could you tell me if this sounds right:

(-) RNA strand is transcribed via (RNA-dep-RNA pol) Replicase. This produces the (+) sense-RNA strand, which is then used to translate into proteins. In addition, the (+) strand, which was synthesized using Replicase, is again used as a template to create more (-) RNA strands. These (-) RNA strands are then packaged into the viral capsid.

Viral Structure and Genetics

  • Viruses consist of nucleic acid enclosed in a protein capsid. Some viruses are covered by an envelope derived from the host cell membrane.
  • Viruses cannot reproduce independently. To reproduce, they must infect a host cell and use the host cell's machinery to produce viral nucleic acids and proteins.
  • Phage may reproduce either via the lytic cycle or the lysogenic cycle.
  • During the lytic cycle, the virus attaches to the host cell and then injects its genetic material. A viral enzyme degrades the host DNA and the host cell's machinery is used to synthesize viral nucleic acids and proteins. The phage self-assemble and the bacterial cell is lysed to release the newly produced phage.
  • During the lysogenic cycle, phage DNA integrates into the bacterial genome and is replicated along with the bacterial DNA. An environmental cue, such as UV light, can trigger the phage to be excised from host DNA and enter the lytic cycle.
  • Positive sense RNA viruses contain RNA that can be translated directly into a protein. Negative sense RNA viruses contain RNA that serves as a template for the synthesis of mRNA.
  • Retroviruses synthesize complementary DNA (cDNA) from an RNA template using the enzyme reverse transcriptase. HIV is a retrovirus.

Viral Structure and Genetics

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Structure of Viruses 0:09
    • Structure of Viruses: Capsid and Envelope
    • Bacteriophage
    • Other Viruses
  • Overview of Viral Reproduction 3:15
    • Host Range
    • Step 1: Bind to Host Cell
    • Step 2: Viral Nuclei Acids Enter the Cell
    • Step 3: Viral Nucleic Acids & Proteins are Synthesized
    • Step 4: Virus Assembles
    • Step 5: Virus Exits the Cell
  • The Lytic Cycle 7:37
    • Steps in the Lytic Cycle
  • The Lysogenic Cycle 11:27
    • Temperate Phage
    • Steps in the Lysogenic Cycle
  • RNA Viruses 16:57
    • Types of RNA Viruses
    • Positive Sense
    • Negative Sense
    • Reproductive Cycle of RNA Viruses
  • Retroviruses 25:48
    • Complementary DNA (cDNA) & Reverse Transcriptase
    • Life Cycle of a Retrovirus
  • Prions 32:42
    • Prions: Definition and Examples
    • Viroids
  • Example 1: The Lytic Cycle 35:37
  • Example 2: Retrovirus 38:03
  • Example 3: Positive Sense RNA vs. Negative Sense RNA 39:10
  • Example 4: The Lysogenic Cycle 40:42

Transcription: Viral Structure and Genetics

Welcome to Educator.com.0000

We will be continuing our discussion of molecular genetics with the topic of viral structure and genetics.0002

Some scientists classify viruses as living organisms, whereas, other scientists classify them as non-living.0012

The reason for this controversy is that while viruses do contain genetic material, they contain nucleic acid.0020

They are not able to replicate independently of a host organism.0028

Some people say "yes, viruses are alive". They contain genetic material either DNA or RNA, and they are alive.0032

Others say "no, these are just a group of chemicals, a very complex group of chemicals.0039

But they cannot replicate on their own therefore, they are not alive".0045

They exist right at that kind of murky border between what is considered living and non-living.0049

The structure of viruses is such that they consist of nucleic acid, which is enclosed in a protein coat called a capsid.0055

And you can see here from these two examples that viral capsids can take different shapes.0064

Going back to the nucleic acid, the genetic material of a virus can be either DNA or RNA.0071

In addition, some viruses contain double-stranded DNA, whereas, others contain single-stranded DNA.0080

RNA viruses can consist of either double-stranded RNA or single-stranded RNA.0089

And viruses, as we will discuss a little later, can be classified according to the type of genetic material that they carry within the capsid.0098

This virus that you see here, this more complex looking one, is an example of a type of phage or bacteriophage, and there are various different ones.0109

This just shows you one example, but bacteriophage or just phage for short, are viruses that infect bacteria, so their host organism is a bacterial cell.0119

Here, you can see that this capsid is more complex than the one shown over here.0133

It has a head as well as what is considered some tail fibers, and within this capsid, though, is packaged the nucleic acid.0138

Here, this virus is a virus that can actually infect humans. This is an example of the influenza virus, and it is just a spherical shape capsid.0150

What you see protruding out here are glycoproteins.0161

Some viruses actually are covered by an envelope.0165

The capsid is covered by an envelope, and this envelope is derived from the host cell. It is derived from the membrane of the host cell.0169

And the glycoproteins that end up on the outside of a virus can be derived from the host cell membrane.0176

They may actually be bacterial glycoproteins produced by the bacteria. Other ones may be viral in origin.0184

Before we get into the various mechanisms of viral reproduction, we are going to just look at an overview of it0196

because there are many different details of the virus life cycle depending on the particular virus.0203

But there is some commonalities these, as well.0208

Again, one commonality is that viruses cannot reproduce independently. They only reproduce inside of another cell.0210

They must infect a host, and then, they actually use the host cell's machinery to make viral nucleic acids and viral proteins.0219

The host range - you can hear the term host range - of a virus is the range of organisms that a virus can infect.0230

Some viruses have a very narrow host range. For example, they may be only able to infect one species such as humans.0249

Other viruses have a broader host range. You might have heard of avian flu or swine flu.0257

Those are viruses that could infect swine or birds, but can also infect humans.0263

Their host range is broader. It includes more than one species.0269

In order to gain entry into a host cell, what a virus does is it binds to specific receptors on the cell surface.0273

As a first step in reproducing, the virus needs to bind to the host cell.0280

This binding is part of what determines the host range or the specificity0286

because the way that the virus binds is the proteins on the surface of the virus recognize specific receptors on the host cell surface.0292

If those receptors are not there, the virus cannot bind.0302

Therefore, this recognition between viral proteins and proteins on the surface of the cell determines the host range.0305

After binding, the virus either injects its nucleic acid, or the entire virus might enter the cell and then, release its nucleic acid.0317

But one way or another, viral nucleic acids enter the cell.0335

And this nucleic acid, it is sometimes just one single linear strand of DNA or RNA, or there are actually may be multiple pieces.0339

There, maybe, more than one piece of genetic material encased in the capsid.0348

The viral nucleic acids enter the cell, and then, at some point, viral nucleic acids and proteins are synthesized using host cell machinery.0357

The virus may actually produce certain enzymes or certain polymerases needed to make nucleic acids or proteins.0377

But many of those enzymes or proteins or factors, raw material, monomers, are just taken from the host cell.0385

Then, the virus will assemble, and viruses undergo what is called cell self-assembly.0397

The nucleic acids have been produced. The capsid proteins have been produced.0404

If there is tail fibers, those are produced, and those all come together within the host cell and assemble into a complete virus.0408

And then, the virus exits the cell.0416

Exiting the cell can be by budding out, and the cell will still live.0422

Or what we are going to talk about in a minute is a way that the virus leaves the host cell that actually involves killing the host cell.0427

A phage have been very well studied. Again, phage are viruses that infect bacterial cells.0435

And we are going to start out by talking about two types of reproductive cycles in bacteriophage, and those are the lytic cycle and the lysogenic cycle.0440

Remember, this is just a generic discussion of the viral life cycle, viral reproduction.0448

Now, we are going to get into a few specific types starting with the lytic cycle.0454

The lytic cycle is actually simpler than the lysogenic cycle.0458

Here, again, we have a bacteriophage, and here is the bacterial cell with its genetic material.0464

And the first thing that the phage does in the lytic cycle is it attaches to the host cell, so step one: attachment to the host cell.0474

And this is mediated by those specific proteins on the virus and by receptors on the bacterial cell that the viral proteins can recognize.0491

The second step is that the virus injects its DNA, and I am saying DNA here not RNA because most bacteriophage are DNA viruses.0500

Their genetic material is usually DNA.0509

So, we will just stick with talking about DNA viruses for right now. We will talk about RNA viruses shortly.0512

This green is the viral DNA. You see that capsid, which is now empty, just stays outside the bacterial cell.0517

It has no longer got nucleic acid. It is just the left over, empty protein shell.0525

Now, we have the bacterial genome, and there is also the viral genome.0532

The next step is that there is a gene that the virus has as part of its genome that encodes for an enzyme that degrades the host cell DNA.0539

So the host DNA ends up chopped up, OK? It degrades host cell DNA.0550

Here, there is shown multiple nucleic acids, and another step is that in here, we see all the protein components.0565

These are separated out just for clarity, but what happens is viral DNA and proteins are synthesized.0572

Host cell DNA cleaved up, degraded. Viral DNA is replicated, and components of the viral capsid are manufactured.0587

Now, we have all the parts to form a compete virus. The next step is for those to be assembled.0599

Step five involves self-assembly.0607

The virus particles come together. We end up with viral nucleic acids packaged inside the capsids.0614

These are all formed. They are ready to go.0620

The next thing that happens, in order to get out of the cell, is that a viral enzyme is used to lyse the bacterial cell.0623

Bacterial cell is lysed, and that is why this is called the lytic cycle because it involves lysis of the host cell.0634

Once the bacterial cell is lysed, the phage are released, and then, the phage can go and go on0643

These daughter phage can go on and infect another cell, and the cycle starts anew.0655

Again, the lytic cycle involves attachment to the cell, injection of the nucleic acid, degradation of host nucleic acid,0660

formation or replication of viral DNA and proteins, assembly of the virus particles and then, lysis of the bacterial cell and release of the viruses.0671

The second cycle that we are going to discuss is called the lysogenic cycle.0685

And this allows the viral nucleic acids to be replicated without killing the host cell.0689

There are some types of viruses that can undergo, they can reproduce via either the lytic or lysogenic cycles, and these are called temperate phage.0695

One type of temperate phage that you might hear about is called lambda, and it has been particularly well studied once.0704

You might hear that talked about, and that is a temperate phage. Again, temperate phage can reproduce via lytic or lysogenic cycle.0713

Looking at the steps of this process, again, it begins with attachment of the viral cell to the host cell0731

- excuse me - attachment of the virus, not viral cell - attachment of virus to host cell.0739

Again, nucleic acid DNA, the viral DNA injected into the cell, and the empty capsid just stays outside the cell.0751

Once inside this nucleic acid, this DNA actually temporarily forms a circle. The viral genome is normally linear.0770

It becomes circularized, and viral enzymes cleave an area of the bacterial genome.0778

And the viral DNA is incorporated into the bacterial genome via recombination.0786

This is where things are very different than the lytic cycle.0792

Viral DNA is incorporated into the bacterial genome.0795

When two different organisms, DNA, genetic material, are brought together like this, we call this recombination.0806

And we are going to hear more about recombination in some other sections of this course.0814

So this is one type of recombination which integrates viral DNA in the bacterial cell DNA.0819

This form of the virus is called a prophage.0826

We call this form of the virus a prophage when it exists as genetic material integrated into the bacterial cell's genetic material.0830

When the bacterial cell replicates, it is going to duplicate its DNA. When it does that, it is also going to replicate the viral DNA.0841

You can see, here is the bacteria. You remember that they reproduce asexually by binary fission, and it has copied its DNA.0851

It has synthesized another bacterial genome for the daughter cell, and it has also replicated the viral DNA.0861

Here, we have the bacterial cell divides, and as a result, the phage DNA is replicated.0870

What, then, happens is this can form the two daughter cells with their DNA including viral DNA. These two can, then, replicate and so on.0888

The viral DNA is going to be present in all of these offspring, and in that way, the viral DNA is reproducing.0901

However, what can happen in the lysogenic cycle is that an environmental trigger can cause the virus to enter the lytic cycle.0909

This environmental trigger could be a chemical that the bacterial cell has been exposed to. It could be ultraviolet light.0920

This viral DNA is going along. It is just quiescent sitting there on the host cell, being replicated along with the host cell.0929

And then, some trigger occurs, so environmental trigger such as ultraviolet light.0936

So, actually, that is something that would occur, hit the bacterial cell, and then, the viral DNA is removed. It is cleaved from the bacterial cell.0950

Once this phage DNA is excised, this cell is going to enter the lytic cycle.0963

The virus will cause the lytic cycle to occur just as we talked about in the previous cell slide.0971

Phage DNA will be reproduced. Phage capsids and other proteins needed to produce a complete virus particle will be produced.0983

The virus will self-assemble. It will lyse the bacterial cell, and then, those viruses will be released.0993

Once this trigger occurs, and this viral DNA is cleaved out of the host DNA, it is just going to go to the same lytic cycle we talked about earlier.1001

And again, a temperate phage is one that can produce through either of these mechanisms.1011

So far, we have been focusing on DNA viruses, and as I mentioned, most viruses that infect bacteria are in fact DNA viruses.1018

However, many animal viruses and plant viruses, viruses that infect animals or plants, are actually RNA.1026

Just reviewing the types of RNA viruses that can exist, one is a double-stranded RNA virus.1036

It has double-stranded RNA as its genetic material. One example is a virus or a set of viruses called the rotaviruses.1044

These are major cause of gastroenteritis - gastric illness - and those are double-stranded DNA viruses.1051

There are also single-stranded - excuse me - it is double-stranded RNA viruses. These are RNA viruses.1058

Single-stranded RNA viruses would include examples such as measles. Prior to vaccination, this is a major childhood illness in the US.1067

Influenza, that is also a single-stranded RNA viruses.1080

There are couple of different types of single-stranded RNA viruses. They can be classed into either positive-sense or negative-sense.1087

A positive-sense single-stranded RNA virus will carry RNA within the capsid, and that RNA can serve directly as mRNA.1098

It can be translated and then, form a protein1112

This can serve as messenger RNA. RNA serves as messenger RNA.1117

Negative-sense single-stranded RNA viruses, within their capsid, they carry a single strand of RNA, as well. Single-stranded RNA is their genome.1130

However, this RNA cannot serve directly as mRNA.1140

Instead, this RNA that is carried within the capsid needs to be used as a template to form a complementary strand, and that will serve as the mRNA.1147

In a negative-sense virus, the RNA that is carried is the complementary strand to the mRNA.1164

Looking at a reproductive cycle of a particular RNA virus, again, there are just some variations on the theme.1173

But just to give you an example of how one cycle could work, here, we have an RNA virus.1181

And it is showing it enveloped with some glycoproteins, and the virus is going to enter the cell.1187

This time, we are not having the genetic material just being injected into the cell, the entire virus is going to enter the cell.1193

Then, once in the cell, this capsid will be degraded or opened up. In some way, the RNA that is packaged inside this capsid will be released.1201

Let's say that this is a positive-sense RNA virus.1210

That means that the RNA that is in here can serve directly as messenger RNA so that when it is released,1216

when this RNA is released, it can be translated, and then, these viral proteins can be formed.1224

Some of these proteins that are found on the envelope might be formed by the virus.1235

And those would have to be eventually sent out to the cell surface via vesicles to be ready for when this virus buds out.1241

In addition, this RNA would have to be used as a template to make more RNA to be packaged inside the capsid. Then, self-assembly occurs.1250

The RNA is put inside the capsid. These glycoproteins all make it out to the cell surface.1259

The virus buds out, and when it does, it ends up with this cell membrane-derived envelope wrapped around it.1265

If this was a negative-sense RNA virus, what would happen is, again, the capsid would enter the cell.1273

The RNA would be released into the cell, but this time, it cannot just directly be used for translation to a protein because it is not mRNA.1286

It is complementary to mRNA.1300

What needs to happen is this is used as a template to make mRNA as mentioned right here.1301

Now, this type of flow of information from RNA to RNA does not typically occur inside the host cell.1309

The flow of information is from DNA to RNA to protein, not RNA to RNA to protein.1315

Therefore, the host cell is not going to be expected to make the enzyme that would be needed to use an RNA template to make messenger RNA.1321

Instead, what is needed is a particular type of RNA polymerase that is called an RNA-dependent RNA polymerase.1335

Or these are sometimes called replicases, these set of RNA-dependent RNA polymerases.1344

A replicase would be used in order to form this second strand that is complementary to the RNA that is carried inside the viral capsid.1352

And this RNA polymerase is usually already found packaged within this capsid so that this enzyme that is needed is already there.1369

The protein is packaged within the capsid. When this RNA is released, this protein is released, as well.1381

This RNA polymerase, it goes ahead. It synthesizes the complementary mRNA strand.1387

Then, those mRNA strands can be used to make proteins, and the host cell machinery can be utilized for that.1395

Notice that this occurs in the cytoplasm.1402

When you look at some DNA viruses in that infected eukaryotic cells, at least part of their life cycle occurs in the nucleus1407

because that is where the machinery to replicate DNA is or to transcribe DNA to RNA.1415

However, since this is an RNA to RNA flow, and the virus is bringing in its own enzyme, the life cycle actually occurs out here in the cytoplasm.1423

RNA viruses actually have a pretty high mutation rate.1434

And if you think about it, it makes sense because we talked about DNA synthesis and that DNA polymerase has a proofreading function.1438

and that proofreading function keeps the mutation rate pretty low.1445

RNA polymerase lacks this proofreading function.1450

So the mutation rate for an RNA virus is going to be higher than for a cell or virus or something that has DNA as a genetic material.1453

The result of these mutations is that RNA viruses in particular can change, and a host cell or a host may have been infected with the type of virus.1464

For example, you might had a flu. You had influenza.1475

Your immune system fought it, made antibodies to it, and then, the next year, you get the flu again.1479

And that is because next year's version of the flu contains slightly different proteins.1484

There is something different about it. Your immune system does not recognize it.1491

And because of this high mutation rate, these changes in the virus are more frequent.1494

This is what can cause what is called a pandemic. A pandemic is just a very widespread, global epidemic.1500

One famous example is the flu pandemic of 1918, which killed 15 million people worldwide.1509

And that is the result of mutation changes, changes in antigen so that the host cell is not recognizing this invader1516

even though you may have had some type of related infection before.1527

There is a particular type of viruses that carries RNA within their capsid, but they are not usually known as RNA viruses.1534

They are actually called retro viruses to distinguish them from other types of viruses that carry RNA as their genome.1542

The reason that retroviruses are set apart although they contain RNA is because they have a DNA intermediate as part of their life cycle.1550

These viruses, retro viruses, therefore, have a flow of information form RNA to cDNA or complementary DNA.1562

And then, form there, they go to messenger RNA and then, on to protein.1573

One well known example of a retrovirus is HIV, the virus that causes AIDS.1580

Let's think about how this would work.1589

Normally, usually, transcription occurs such as that you start out with DNA, and then, transcription occurs, end up with RNA. This is transcription.1591

What is happening here is the opposite. Instead of going from DNA to RNA, this virus is going from RNA to DNA.1604

For that reason, this step is called reverse transcription because it is the reverse of the typical order of things when transcription occurs.1616

Since a typical cell would not use RNA to make DNA, the virus has to bring its own enzyme in to do that job.1630

The cell does not already have a type of enzyme that could catalyze this process.1640

Therefore, the enzyme reverse transcriptase is packaged in the capsid of the retrovirus and allows the retrovirus to make cDNA from an RNA template.1645

This, since it is made by the virus and not by the host cell, is a great target for attacking the retrovirus.1665

And in fact, one treatment for HIV is a group of drugs called reverse transcriptase inhibitors- RTIs.1672

These are reverse transcriptase inhibitors, and they block reverse transcriptase.1682

Different treatments for viruses and bacteria, they target elements of the pathogen that are different from the host cell.1688

That way, we can attack the invader without damaging the host cell.1698

The life cycle of a retrovirus: as usual, the first thing that has to happen is the1704

virus - in this case a retrovirus - attaches to the host cell and enters the host cell.1710

In this case, the entire virus enters. It fuses with the host membrane of the cell and then, enters the cell that way.1722

Once inside, the viral RNA is released, so the capsid releases the viral RNA inside the host cell. Actually, RNA is, then, used to produce DNA.1730

And this DNA strand is complementary to the RNA that served as a template, so it is called cDNA or complementary DNA.1763

The next step is that the DNA enters the nucleus of the host cell and is integrated into the host cell genome.1772

This form, so we have the host cell. We have a nucleus, and we have got our host cell DNA; and then, the retroviral DNA ends up integrated.1798

This probably reminds you what we talked about with the lysogenic cycle, where the phage DNA became integrated into the bacterial genome.1814

And we called that form of the virus a prophage.1822

This form of the virus is called a provirus, the form of the virus whereby the DNA is integrated in the host cell DNA.1826

One very important difference, though, when we talked about the lysogenic cycle, at some point with an environmental trigger,1835

that phage DNA could be excised from the bacterial DNA and then, go off into the lytic cycle.1843

It is removed from the bacterial genome. That does not occur here.1853

Once integrated, this retroviral DNA, this provirus, is permanently a part of the cell's DNA. It does not become excised.1855

It stays in there, and then, using host cell machinery, our messenger RNA can be made.1866

The DNA, the cell's DNA can be transcribed. The viral DNA can also be transcribed.1874

Messenger RNA would be produced, and then, out to the cytoplasm where it is translated, viral particles will be made.1882

These will assemble, and then, they will bud from the host cell.1893

They will be released. They will just bud out from the host cell.1897

Again, virus starts out with RNA inside its capsid. Once inside the host cell, reverse transcriptase is the enzyme used to synthesize cDNA from RNA.1901

That cDNA enters the host cell nucleus, becomes integrated with the host cell genome. It is called a provirus now.1914

That proviral DNA can be transcribed and then, translated to make viral proteins such as reverse transcriptase and capsid proteins.1922

Also, the RNA is made. That is going to be packaged inside these capsids.1933

Viruses assemble. They bud out, and they can go on to infect another cell, so that is the retrovirus life cycle.1942

Now, we are going to talk about infectious agents that are even simpler than viruses.1948

Viruses are composed of a capsid, which is made of protein and then, nucleic acid.1953

There is a couple types of infectious agents. They are composed of even less.1959

One of these is prions. Prions are infectious agents that are composed only of protein.1963

They do not carry nucleic acid. Examples of this, pretty well known examples- mad cow disease.1971

The counterpart of this in humans is a disease called Creutzfeldt-Jakob disease.1982

In sheep, there is a disease called scrapie, and all of these are neurological illnesses.1990

They have very long incubation periods meaning that an individual could be infected by the prion2002

and not have any symptoms for years or even a decade, and then, they begin showing symptoms.2009

It is a degenerative neurological or these are degenerative neurological illnesses. Unfortunately, they are fatal, and they are not treatable.2015

How exactly is a protein causing this?2024

Well, what is thought is that prions appear to be misfolded proteins that are similar to host cell proteins.2026

Prions are composed of these proteins that are not folded correctly, and then, what is thought is that they get into the neurological system.2037

And they cause the normal counterpart inside the neurological system to also misfold, so somehow, they induce similar proteins to misfold, as well.2044

What happens? Well, these misfolded proteins are believed to aggregate, and this clumping up or aggregation of misfolded proteins damages the brain.2059

Prions are actually very hard to inactivate, as well, so disinfecting or getting rid of, killing, deactivating these, is difficult.2072

They are pretty resistant to many of the typical methods of sterilization, and they are tough to destroy.2080

Now, a second type of infectious agent that is very simple is a group called the viroids.2087

Whereas, prions are composed just of protein, viroids are just composed of RNA.2095

These are circular RNA molecules, and they can infect plants, so they can cause plant disease- no capsid, just naked RNA molecules.2099

It is believed that they cause disease in plants by somehow disrupting regulatory systems inside the plant that causes problems with the plant growth.2116

Again, these are both infectious agents that are even simpler than viruses.2129

Alright, today we have discussed viruses as well as prions and viroids.2136

We are going to go ahead and do some examples to review this material.2140

Example one: describe the steps involved in the reproduction of a virus by the lytic cycle.2143

Remember that the first step of infection via the lytic cycle is attachment of the virus to the host cell.2151

And that is mediated by specific proteins on the surface of the virus and receptors on the surface of the host cell.2166

Once the virus is attached, the virus injects its DNA into the host cell.2174

The next thing is that the virus produces an enzyme that degrades the host cell DNA, so a viral enzyme degrades host DNA.2187

After that, the virus uses the host cell's machinery to replicate viral DNA and proteins produced using the host cell machinery.2206

Capsid proteins would be produced and the other proteins that the virus has packaged within the capsid.2224

Also, copies of the genetic material, the viral genome, are made. After that, the virus particles self-assemble.2229

The DNA is placed inside the capsid. Any different parts of the capsid that need to come together do, and then, a viral enzyme lysis the bacterial cell.2241

The viral enzyme lysis the host cell, and virus particles are released.2260

These viral particles, the offspring of the original virus are, then, free to go ahead and infect another cell, so, this is the lytic cycle.2272

How does a retrovirus differ from an RNA virus?2284

Well, recall that with an RNA virus, the flow of information is just RNA to RNA and then, protein. No DNA is involved, so this is a typical RNA virus.2289

The details differ depending on if it is a single-stranded or double-stranded, positive or negative-sense.2305

But overall, the flow of information is just RNA to RNA.2311

In contrast, a retrovirus has a DNA intermediate, so there is a DNA intermediate.2314

The flow of information is from the RNA packaged within the retrovirus that is used as a template to make cDNA,2324

which is then, used to make RNA, and that can be translated to protein.2332

The difference between a retrovirus and a group of viruses that we actually2340

call RNA viruses is that there is a DNA intermediate in the retrovirus life cycle.2343

Example three: what is the difference between a positive-sense RNA virus and negative-sense RNA virus?2351

Again, with the single-stranded RNA viruses, there can be positive or negative-sense viruses.2357

In a positive-sense RNA virus, the genome serves directly as mRNA.2364

That RNA that is packaged within that capsid can be used, can be directly translated into a protein. That is a positive-sense virus.2379

In a negative-sense virus, the genome serves as a template to produce mRNA.2392

In other words, the genome is complementary to mRNA, so the genome can be used in negative-sense.2408

Here, you have the RNA that is used as a genome.2419

That can be used to synthesize - using the particular type of RNA polymerase called a replicase - a complementary strand of RNA.2423

And this is the strand that is an mRNA rather than directly packaging mRNA within the capsid.2434

Example four: put the steps of the lysogenic cycle in the correct order.2442

A: phage DNA is excised from the host cell's genome following an environmental trigger.2447

B: phage DNA is copied along with bacterial DNA when the host cell divides.2454

C: viral enzymes cleave the circular bacterial genome, and the viral DNA is incorporated into the bacterial genome forming a prophage.2459

D: the virus attaches to the host cell using specific receptor proteins.2470

E: the viral nucleic acid is injected into the host cell.2476

Well, recall that the first step of the lysogenic cycle is for the virus to attach to the host cell. That is what happens first.2480

That is right here- attachment to the host cell, so we will put that first.2489

Then, think about what the virus does after it attaches to the host cell.2496

The next thing that the phage does is it injects its genetic material into the host cell, so we need to find that one, which is down here. That is E.2501

After attaching to the host cell, the viral nucleic acid is injected into the host cell- E.2511

With the lysogenic cycle, the next thing that happens,2522

once that nucleic acid is in the cell is that it actually becomes integrated into the bacterial genome.2525

Phage DNA is excised from the host cell's genome- not yet.2535

Phage DNA is copied along with bacterial genome- not yet.2539

Viral enzymes cleave the circular bacterial genome, and the viral DNA is incorporated into the bacterial genome forming a prophage- that is correct,2543

so, attachment, injection of nucleic acid and then, integration into the bacterial genome.2551

After that, the phage DNA is not yet excised.2557

Actually, what happens after integration is that phage DNA is copied along with bacterial DNA when the host cell divides.2561

And that leaves us with the final step.2569

If there is an environmental trigger such as ultraviolet light, the phage DNA can be excised from the host cell's genome and then, enter the lytic cycle.2571

So, this is the correct order- D, E, C, B and A.2580

That concludes this session on viral genetics.2586

Thanks for visiting Educator.com.2590

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.