Raffi Hovasapian

Raffi Hovasapian

Oxidative Phosphorylation II

Slide Duration:

Table of Contents

Section 1: Preliminaries on Aqueous Chemistry
Aqueous Solutions & Concentration

39m 57s

Intro
0:00
Aqueous Solutions and Concentration
0:46
Definition of Solution
1:28
Example: Sugar Dissolved in Water
2:19
Example: Salt Dissolved in Water
3:04
A Solute Does Not Have to Be a Solid
3:37
A Solvent Does Not Have to Be a Liquid
5:02
Covalent Compounds
6:55
Ionic Compounds
7:39
Example: Table Sugar
9:12
Example: MgCl₂
10:40
Expressing Concentration: Molarity
13:42
Example 1
14:47
Example 1: Question
14:50
Example 1: Solution
15:40
Another Way to Express Concentration
22:01
Example 2
24:00
Example 2: Question
24:01
Example 2: Solution
24:49
Some Other Ways of Expressing Concentration
27:52
Example 3
29:30
Example 3: Question
29:31
Example 3: Solution
31:02
Dilution & Osmotic Pressure

38m 53s

Intro
0:00
Dilution
0:45
Definition of Dilution
0:46
Example 1: Question
2:08
Example 1: Basic Dilution Equation
4:20
Example 1: Solution
5:31
Example 2: Alternative Approach
12:05
Osmotic Pressure
14:34
Colligative Properties
15:02
Recall: Covalent Compounds and Soluble Ionic Compounds
17:24
Properties of Pure Water
19:42
Addition of a Solute
21:56
Osmotic Pressure: Conceptual Example
24:00
Equation for Osmotic Pressure
29:30
Example of 'i'
31:38
Example 3
32:50
More on Osmosis

29m 1s

Intro
0:00
More on Osmosis
1:25
Osmotic Pressure
1:26
Example 1: Molar Mass of Protein
5:25
Definition, Equation, and Unit of Osmolarity
13:13
Example 2: Osmolarity
15:19
Isotonic, Hypertonic, and Hypotonic
20:20
Example 3
22:20
More on Isotonic, Hypertonic, and Hypotonic
26:14
Osmosis vs. Osmotic Pressure
27:56
Acids & Bases

39m 11s

Intro
0:00
Acids and Bases
1:16
Let's Begin With H₂O
1:17
P-Scale
4:22
Example 1
6:39
pH
9:43
Strong Acids
11:10
Strong Bases
13:52
Weak Acids & Bases Overview
14:32
Weak Acids
15:49
Example 2: Phosphoric Acid
19:30
Weak Bases
24:50
Weak Base Produces Hydroxide Indirectly
25:41
Example 3: Pyridine
29:07
Acid Form and Base Form
32:02
Acid Reaction
35:50
Base Reaction
36:27
Ka, Kb, and Kw
37:14
Titrations and Buffers

41m 33s

Intro
0:00
Titrations
0:27
Weak Acid
0:28
Rearranging the Ka Equation
1:45
Henderson-Hasselbalch Equation
3:52
Fundamental Reaction of Acids and Bases
5:36
The Idea Behind a Titration
6:27
Let's Look at an Acetic Acid Solution
8:44
Titration Curve
17:00
Acetate
23:57
Buffers
26:57
Introduction to Buffers
26:58
What is a Buffer?
29:40
Titration Curve & Buffer Region
31:44
How a Buffer Works: Adding OH⁻
34:44
How a Buffer Works: Adding H⁺
35:58
Phosphate Buffer System
38:02
Example Problems with Acids, Bases & Buffers

44m 19s

Intro
0:00
Example 1
1:21
Example 1: Properties of Glycine
1:22
Example 1: Part A
3:40
Example 1: Part B
4:40
Example 2
9:02
Example 2: Question
9:03
Example 2: Total Phosphate Concentration
12:23
Example 2: Final Solution
17:10
Example 3
19:34
Example 3: Question
19:35
Example 3: pH Before
22:18
Example 3: pH After
24:24
Example 3: New pH
27:54
Example 4
30:00
Example 4: Question
30:01
Example 4: Equilibria
32:52
Example 4: 1st Reaction
38:04
Example 4: 2nd Reaction
39:53
Example 4: Final Solution
41:33
Hydrolysis & Condensation Reactions

18m 45s

Intro
0:00
Hydrolysis and Condensation Reactions
0:50
Hydrolysis
0:51
Condensation
2:42
Example 1: Hydrolysis of Ethyl Acetate
4:52
Example 2: Condensation of Acetic Acid with Ethanol
8:42
Example 3
11:18
Example 4: Formation & Hydrolysis of a Peptide Bond Between the Amino Acids Alanine & Serine
14:56
Section 2: Amino Acids & Proteins: Primary Structure
Amino Acids

38m 19s

Intro
0:00
Amino Acids
0:17
Proteins & Amino Acids
0:18
Difference Between Amino Acids
4:20
α-Carbon
7:08
Configuration in Biochemistry
10:43
L-Glyceraldehyde & Fischer Projection
12:32
D-Glyceraldehyde & Fischer Projection
15:31
Amino Acids in Biological Proteins are the L Enantiomer
16:50
L-Amino Acid
18:04
L-Amino Acids Correspond to S-Enantiomers in the RS System
20:10
Classification of Amino Acids
22:53
Amino Acids With Non-Polar R Groups
26:45
Glycine
27:00
Alanine
27:48
Valine
28:15
Leucine
28:58
Proline
31:08
Isoleucine
32:42
Methionine
33:43
Amino Acids With Aromatic R Groups
34:33
Phenylalanine
35:26
Tyrosine
36:02
Tryptophan
36:32
Amino Acids, Continued

27m 14s

Intro
0:00
Amino Acids With Positively Charged R Groups
0:16
Lysine
0:52
Arginine
1:55
Histidine
3:15
Amino Acids With Negatively Charged R Groups
6:28
Aspartate
6:58
Glutamate
8:11
Amino Acids With Uncharged, but Polar R Groups
8:50
Serine
8:51
Threonine
10:21
Cysteine
11:06
Asparagine
11:35
Glutamine
12:44
More on Amino Acids
14:18
Cysteine Dimerizes to Form Cystine
14:53
Tryptophan, Tyrosine, and Phenylalanine
19:07
Other Amino Acids
20:53
Other Amino Acids: Hydroxy Lysine
22:34
Other Amino Acids: r-Carboxy Glutamate
25:37
Acid/Base Behavior of Amino Acids

48m 28s

Intro
0:00
Acid/Base Behavior of Amino Acids
0:27
Acid/Base Behavior of Amino Acids
0:28
Let's Look at Alanine
1:57
Titration of Acidic Solution of Alanine with a Strong Base
2:51
Amphoteric Amino Acids
13:24
Zwitterion & Isoelectric Point
16:42
Some Amino Acids Have 3 Ionizable Groups
20:35
Example: Aspartate
24:44
Example: Tyrosine
28:50
Rule of Thumb
33:04
Basis for the Rule
35:59
Example: Describe the Degree of Protonation for Each Ionizable Group
38:46
Histidine is Special
44:58
Peptides & Proteins

45m 18s

Intro
0:00
Peptides and Proteins
0:15
Introduction to Peptides and Proteins
0:16
Formation of a Peptide Bond: The Bond Between 2 Amino Acids
1:44
Equilibrium
7:53
Example 1: Build the Following Tripeptide Ala-Tyr-Ile
9:48
Example 1: Shape Structure
15:43
Example 1: Line Structure
17:11
Peptides Bonds
20:08
Terms We'll Be Using Interchangeably
23:14
Biological Activity & Size of a Peptide
24:58
Multi-Subunit Proteins
30:08
Proteins and Prosthetic Groups
32:13
Carbonic Anhydrase
37:35
Primary, Secondary, Tertiary, and Quaternary Structure of Proteins
40:26
Amino Acid Sequencing of a Peptide Chain

42m 47s

Intro
0:00
Amino Acid Sequencing of a Peptide Chain
0:30
Amino Acid Sequence and Its Structure
0:31
Edman Degradation: Overview
2:57
Edman Degradation: Reaction - Part 1
4:58
Edman Degradation: Reaction - Part 2
10:28
Edman Degradation: Reaction - Part 3
13:51
Mechanism Step 1: PTC (Phenylthiocarbamyl) Formation
19:01
Mechanism Step 2: Ring Formation & Peptide Bond Cleavage
23:03
Example: Write Out the Edman Degradation for the Tripeptide Ala-Tyr-Ser
30:29
Step 1
30:30
Step 2
34:21
Step 3
36:56
Step 4
38:28
Step 5
39:24
Step 6
40:44
Sequencing Larger Peptides & Proteins

1h 2m 33s

Intro
0:00
Sequencing Larger Peptides and Proteins
0:28
Identifying the N-Terminal Amino Acids With the Reagent Fluorodinitrobenzene (FDNB)
0:29
Sequencing Longer Peptides & Proteins Overview
5:54
Breaking Peptide Bond: Proteases and Chemicals
8:16
Some Enzymes/Chemicals Used for Fragmentation: Trypsin
11:14
Some Enzymes/Chemicals Used for Fragmentation: Chymotrypsin
13:02
Some Enzymes/Chemicals Used for Fragmentation: Cyanogen Bromide
13:28
Some Enzymes/Chemicals Used for Fragmentation: Pepsin
13:44
Cleavage Location
14:04
Example: Chymotrypsin
16:44
Example: Pepsin
18:17
More on Sequencing Larger Peptides and Proteins
19:29
Breaking Disulfide Bonds: Performic Acid
26:08
Breaking Disulfide Bonds: Dithiothreitol Followed by Iodoacetate
31:04
Example: Sequencing Larger Peptides and Proteins
37:03
Part 1 - Breaking Disulfide Bonds, Hydrolysis and Separation
37:04
Part 2 - N-Terminal Identification
44:16
Part 3 - Sequencing Using Pepsin
46:43
Part 4 - Sequencing Using Cyanogen Bromide
52:02
Part 5 - Final Sequence
56:48
Peptide Synthesis (Merrifield Process)

49m 12s

Intro
0:00
Peptide Synthesis (Merrifield Process)
0:31
Introduction to Synthesizing Peptides
0:32
Merrifield Peptide Synthesis: General Scheme
3:03
So What Do We Do?
6:07
Synthesis of Protein in the Body Vs. The Merrifield Process
7:40
Example: Synthesis of Ala-Gly-Ser
9:21
Synthesis of Ala-Gly-Ser: Reactions Overview
11:41
Synthesis of Ala-Gly-Ser: Reaction 1
19:34
Synthesis of Ala-Gly-Ser: Reaction 2
24:34
Synthesis of Ala-Gly-Ser: Reaction 3
27:34
Synthesis of Ala-Gly-Ser: Reaction 4 & 4a
28:48
Synthesis of Ala-Gly-Ser: Reaction 5
33:38
Synthesis of Ala-Gly-Ser: Reaction 6
36:45
Synthesis of Ala-Gly-Ser: Reaction 7 & 7a
37:44
Synthesis of Ala-Gly-Ser: Reaction 8
39:47
Synthesis of Ala-Gly-Ser: Reaction 9 & 10
43:23
Chromatography: Eluent, Stationary Phase, and Eluate
45:55
More Examples with Amino Acids & Peptides

54m 31s

Intro
0:00
Example 1
0:22
Data
0:23
Part A: What is the pI of Serine & Draw the Correct Structure
2:11
Part B: How Many mL of NaOH Solution Have Been Added at This Point (pI)?
5:27
Part C: At What pH is the Average Charge on Serine
10:50
Part D: Draw the Titration Curve for This Situation
14:50
Part E: The 10 mL of NaOH Added to the Solution at the pI is How Many Equivalents?
17:35
Part F: Serine Buffer Solution
20:22
Example 2
23:04
Data
23:05
Part A: Calculate the Minimum Molar Mass of the Protein
25:12
Part B: How Many Tyr Residues in this Protein?
28:34
Example 3
30:08
Question
30:09
Solution
34:30
Example 4
48:46
Question
48:47
Solution
49:50
Section 3: Proteins: Secondary, Tertiary, and Quaternary Structure
Alpha Helix & Beta Conformation

50m 52s

Intro
0:00
Alpha Helix and Beta Conformation
0:28
Protein Structure Overview
0:29
Weak interactions Among the Amino Acid in the Peptide Chain
2:11
Two Principals of Folding Patterns
4:56
Peptide Bond
7:00
Peptide Bond: Resonance
9:46
Peptide Bond: φ Bond & ψ Bond
11:22
Secondary Structure
15:08
α-Helix Folding Pattern
17:28
Illustration 1: α-Helix Folding Pattern
19:22
Illustration 2: α-Helix Folding Pattern
21:39
β-Sheet
25:16
β-Conformation
26:04
Parallel & Anti-parallel
28:44
Parallel β-Conformation Arrangement of the Peptide Chain
30:12
Putting Together a Parallel Peptide Chain
35:16
Anti-Parallel β-Conformation Arrangement
37:42
Tertiary Structure
45:03
Quaternary Structure
45:52
Illustration 3: Myoglobin Tertiary Structure & Hemoglobin Quaternary Structure
47:13
Final Words on Alpha Helix and Beta Conformation
48:34
Section 4: Proteins: Function
Protein Function I: Ligand Binding & Myoglobin

51m 36s

Intro
0:00
Protein Function I: Ligand Binding & Myoglobin
0:30
Ligand
1:02
Binding Site
2:06
Proteins are Not Static or Fixed
3:36
Multi-Subunit Proteins
5:46
O₂ as a Ligand
7:21
Myoglobin, Protoporphyrin IX, Fe ²⁺, and O₂
12:54
Protoporphyrin Illustration
14:25
Myoglobin With a Heme Group Illustration
17:02
Fe²⁺ has 6 Coordination Sites & Binds O₂
18:10
Heme
19:44
Myoglobin Overview
22:40
Myoglobin and O₂ Interaction
23:34
Keq or Ka & The Measure of Protein's Affinity for Its Ligand
26:46
Defining α: Fraction of Binding Sites Occupied
32:52
Graph: α vs. [L]
37:33
For The Special Case of α = 0.5
39:01
Association Constant & Dissociation Constant
43:54
α & Kd
45:15
Myoglobin's Binding of O₂
48:20
Protein Function II: Hemoglobin

1h 3m 36s

Intro
0:00
Protein Function II: Hemoglobin
0:14
Hemoglobin Overview
0:15
Hemoglobin & Its 4 Subunits
1:22
α and β Interactions
5:18
Two Major Conformations of Hb: T State (Tense) & R State (Relaxed)
8:06
Transition From The T State to R State
12:03
Binding of Hemoglobins & O₂
14:02
Binding Curve
18:32
Hemoglobin in the Lung
27:28
Signoid Curve
30:13
Cooperative Binding
32:25
Hemoglobin is an Allosteric Protein
34:26
Homotropic Allostery
36:18
Describing Cooperative Binding Quantitatively
38:06
Deriving The Hill Equation
41:52
Graphing the Hill Equation
44:43
The Slope and Degree of Cooperation
46:25
The Hill Coefficient
49:48
Hill Coefficient = 1
51:08
Hill Coefficient < 1
55:55
Where the Graph Hits the x-axis
56:11
Graph for Hemoglobin
58:02
Protein Function III: More on Hemoglobin

1h 7m 16s

Intro
0:00
Protein Function III: More on Hemoglobin
0:11
Two Models for Cooperative Binding: MWC & Sequential Model
0:12
MWC Model
1:31
Hemoglobin Subunits
3:32
Sequential Model
8:00
Hemoglobin Transports H⁺ & CO₂
17:23
Binding Sites of H⁺ and CO₂
19:36
CO₂ is Converted to Bicarbonate
23:28
Production of H⁺ & CO₂ in Tissues
27:28
H⁺ & CO₂ Binding are Inversely Related to O₂ Binding
28:31
The H⁺ Bohr Effect: His¹⁴⁶ Residue on the β Subunits
33:31
Heterotropic Allosteric Regulation of O₂ Binding by 2,3-Biphosphoglycerate (2,3 BPG)
39:53
Binding Curve for 2,3 BPG
56:21
Section 5: Enzymes
Enzymes I

41m 38s

Intro
0:00
Enzymes I
0:38
Enzymes Overview
0:39
Cofactor
4:38
Holoenzyme
5:52
Apoenzyme
6:40
Riboflavin, FAD, Pyridoxine, Pyridoxal Phosphate Structures
7:28
Carbonic Anhydrase
8:45
Classification of Enzymes
9:55
Example: EC 1.1.1.1
13:04
Reaction of Oxidoreductases
16:23
Enzymes: Catalysts, Active Site, and Substrate
18:28
Illustration of Enzymes, Substrate, and Active Site
27:22
Catalysts & Activation Energies
29:57
Intermediates
36:00
Enzymes II

44m 2s

Intro
0:00
Enzymes II: Transitions State, Binding Energy, & Induced Fit
0:18
Enzymes 'Fitting' Well With The Transition State
0:20
Example Reaction: Breaking of a Stick
3:40
Another Energy Diagram
8:20
Binding Energy
9:48
Enzymes Specificity
11:03
Key Point: Optimal Interactions Between Substrate & Enzymes
15:15
Induced Fit
16:25
Illustrations: Induced Fit
20:58
Enzymes II: Catalytic Mechanisms
22:17
General Acid/Base Catalysis
23:56
Acid Form & Base Form of Amino Acid: Glu &Asp
25:26
Acid Form & Base Form of Amino Acid: Lys & Arg
26:30
Acid Form & Base Form of Amino Acid: Cys
26:51
Acid Form & Base Form of Amino Acid: His
27:30
Acid Form & Base Form of Amino Acid: Ser
28:16
Acid Form & Base Form of Amino Acid: Tyr
28:30
Example: Phosphohexose Isomerase
29:20
Covalent Catalysis
34:19
Example: Glyceraldehyde 3-Phosphate Dehydrogenase
35:34
Metal Ion Catalysis: Isocitrate Dehydrogenase
38:45
Function of Mn²⁺
42:15
Enzymes III: Kinetics

56m 40s

Intro
0:00
Enzymes III: Kinetics
1:40
Rate of an Enzyme-Catalyzed Reaction & Substrate Concentration
1:41
Graph: Substrate Concentration vs. Reaction Rate
10:43
Rate At Low and High Substrate Concentration
14:26
Michaelis & Menten Kinetics
20:16
More On Rate & Concentration of Substrate
22:46
Steady-State Assumption
26:02
Rate is Determined by How Fast ES Breaks Down to Product
31:36
Total Enzyme Concentration: [Et] = [E] + [ES]
35:35
Rate of ES Formation
36:44
Rate of ES Breakdown
38:40
Measuring Concentration of Enzyme-Substrate Complex
41:19
Measuring Initial & Maximum Velocity
43:43
Michaelis & Menten Equation
46:44
What Happens When V₀ = (1/2) Vmax?
49:12
When [S] << Km
53:32
When [S] >> Km
54:44
Enzymes IV: Lineweaver-Burk Plots

20m 37s

Intro
0:00
Enzymes IV: Lineweaver-Burk Plots
0:45
Deriving The Lineweaver-Burk Equation
0:46
Lineweaver-Burk Plots
3:55
Example 1: Carboxypeptidase A
8:00
More on Km, Vmax, and Enzyme-catalyzed Reaction
15:54
Enzymes V: Enzyme Inhibition

51m 37s

Intro
0:00
Enzymes V: Enzyme Inhibition Overview
0:42
Enzyme Inhibitors Overview
0:43
Classes of Inhibitors
2:32
Competitive Inhibition
3:08
Competitive Inhibition
3:09
Michaelis & Menten Equation in the Presence of a Competitive Inhibitor
7:40
Double-Reciprocal Version of the Michaelis & Menten Equation
14:48
Competitive Inhibition Graph
16:37
Uncompetitive Inhibition
19:23
Uncompetitive Inhibitor
19:24
Michaelis & Menten Equation for Uncompetitive Inhibition
22:10
The Lineweaver-Burk Equation for Uncompetitive Inhibition
26:04
Uncompetitive Inhibition Graph
27:42
Mixed Inhibition
30:30
Mixed Inhibitor
30:31
Double-Reciprocal Version of the Equation
33:34
The Lineweaver-Burk Plots for Mixed Inhibition
35:02
Summary of Reversible Inhibitor Behavior
38:00
Summary of Reversible Inhibitor Behavior
38:01
Note: Non-Competitive Inhibition
42:22
Irreversible Inhibition
45:15
Irreversible Inhibition
45:16
Penicillin & Transpeptidase Enzyme
46:50
Enzymes VI: Regulatory Enzymes

51m 23s

Intro
0:00
Enzymes VI: Regulatory Enzymes
0:45
Regulatory Enzymes Overview
0:46
Example: Glycolysis
2:27
Allosteric Regulatory Enzyme
9:19
Covalent Modification
13:08
Two Other Regulatory Processes
16:28
Allosteric Regulation
20:58
Feedback Inhibition
25:12
Feedback Inhibition Example: L-Threonine → L-Isoleucine
26:03
Covalent Modification
27:26
Covalent Modulators: -PO₃²⁻
29:30
Protein Kinases
31:59
Protein Phosphatases
32:47
Addition/Removal of -PO₃²⁻ and the Effect on Regulatory Enzyme
33:36
Phosphorylation Sites of a Regulatory Enzyme
38:38
Proteolytic Cleavage
41:48
Zymogens: Chymotrypsin & Trypsin
43:58
Enzymes That Use More Than One Regulatory Process: Bacterial Glutamine Synthetase
48:59
Why The Complexity?
50:27
Enzymes VII: Km & Kcat

54m 49s

Intro
0:00
Km
1:48
Recall the Michaelis–Menten Equation
1:49
Km & Enzyme's Affinity
6:18
Rate Forward, Rate Backward, and Equilibrium Constant
11:08
When an Enzyme's Affinity for Its Substrate is High
14:17
More on Km & Enzyme Affinity
17:29
The Measure of Km Under Michaelis–Menten kinetic
23:19
Kcat (First-order Rate Constant or Catalytic Rate Constant)
24:10
Kcat: Definition
24:11
Kcat & The Michaelis–Menten Postulate
25:18
Finding Vmax and [Et}
27:27
Units for Vmax and Kcat
28:26
Kcat: Turnover Number
28:55
Michaelis–Menten Equation
32:12
Km & Kcat
36:37
Second Order Rate Equation
36:38
(Kcat)/(Km): Overview
39:22
High (Kcat)/(Km)
40:20
Low (Kcat)/(Km)
43:16
Practical Big Picture
46:28
Upper Limit to (Kcat)/(Km)
48:56
More On Kcat and Km
49:26
Section 6: Carbohydrates
Monosaccharides

1h 17m 46s

Intro
0:00
Monosaccharides
1:49
Carbohydrates Overview
1:50
Three Major Classes of Carbohydrates
4:48
Definition of Monosaccharides
5:46
Examples of Monosaccharides: Aldoses
7:06
D-Glyceraldehyde
7:39
D-Erythrose
9:00
D-Ribose
10:10
D-Glucose
11:20
Observation: Aldehyde Group
11:54
Observation: Carbonyl 'C'
12:30
Observation: D & L Naming System
12:54
Examples of Monosaccharides: Ketose
16:54
Dihydroxy Acetone
17:28
D-Erythrulose
18:30
D-Ribulose
19:49
D-Fructose
21:10
D-Glucose Comparison
23:18
More information of Ketoses
24:50
Let's Look Closer at D-Glucoses
25:50
Let's Look At All the D-Hexose Stereoisomers
31:22
D-Allose
32:20
D-Altrose
33:01
D-Glucose
33:39
D-Gulose
35:00
D-Mannose
35:40
D-Idose
36:42
D-Galactose
37:14
D-Talose
37:42
Epimer
40:05
Definition of Epimer
40:06
Example of Epimer: D-Glucose, D-Mannose, and D-Galactose
40:57
Hemiacetal or Hemiketal
44:36
Hemiacetal/Hemiketal Overview
45:00
Ring Formation of the α and β Configurations of D-Glucose
50:52
Ring Formation of the α and β Configurations of Fructose
1:01:39
Haworth Projection
1:07:34
Pyranose & Furanose Overview
1:07:38
Haworth Projection: Pyranoses
1:09:30
Haworth Projection: Furanose
1:14:56
Hexose Derivatives & Reducing Sugars

37m 6s

Intro
0:00
Hexose Derivatives
0:15
Point of Clarification: Forming a Cyclic Sugar From a Linear Sugar
0:16
Let's Recall the α and β Anomers of Glucose
8:42
α-Glucose
10:54
Hexose Derivatives that Play Key Roles in Physiology Progression
17:38
β-Glucose
18:24
β-Glucosamine
18:48
N-Acetyl-β-Glucosamine
20:14
β-Glucose-6-Phosphate
22:22
D-Gluconate
24:10
Glucono-δ-Lactone
26:33
Reducing Sugars
29:50
Reducing Sugars Overview
29:51
Reducing Sugars Example: β-Galactose
32:36
Disaccharides

43m 32s

Intro
0:00
Disaccharides
0:15
Disaccharides Overview
0:19
Examples of Disaccharides & How to Name Them
2:49
Disaccharides Trehalose Overview
15:46
Disaccharides Trehalose: Flip
20:52
Disaccharides Trehalose: Spin
28:36
Example: Draw the Structure
33:12
Polysaccharides

39m 25s

Intro
0:00
Recap Example: Draw the Structure of Gal(α1↔β1)Man
0:38
Polysaccharides
9:46
Polysaccharides Overview
9:50
Homopolysaccharide
13:12
Heteropolysaccharide
13:47
Homopolysaccharide as Fuel Storage
16:23
Starch Has Two Types of Glucose Polymer: Amylose
17:10
Starch Has Two Types of Glucose Polymer: Amylopectin
18:04
Polysaccharides: Reducing End & Non-Reducing End
19:30
Glycogen
20:06
Examples: Structures of Polysaccharides
21:42
Let's Draw an (α1→4) & (α1→6) of Amylopectin by Hand.
28:14
More on Glycogen
31:17
Glycogen, Concentration, & The Concept of Osmolarity
35:16
Polysaccharides, Part 2

44m 15s

Intro
0:00
Polysaccharides
0:17
Example: Cellulose
0:34
Glycoside Bond
7:25
Example Illustrations
12:30
Glycosaminoglycans Part 1
15:55
Glycosaminoglycans Part 2
18:34
Glycosaminoglycans & Sulfate Attachments
22:42
β-D-N-Acetylglucosamine
24:49
β-D-N-AcetylGalactosamine
25:42
β-D-Glucuronate
26:44
β-L-Iduronate
27:54
More on Sulfate Attachments
29:49
Hylarunic Acid
32:00
Hyaluronates
39:32
Other Glycosaminoglycans
40:46
Glycoconjugates

44m 23s

Intro
0:00
Glycoconjugates
0:24
Overview
0:25
Proteoglycan
2:53
Glycoprotein
5:20
Glycolipid
7:25
Proteoglycan vs. Glycoprotein
8:15
Cell Surface Diagram
11:17
Proteoglycan Common Structure
14:24
Example: Chondroitin-4-Sulfate
15:06
Glycoproteins
19:50
The Monomers that Commonly Show Up in The Oligo Portions of Glycoproteins
28:02
N-Acetylneuraminic Acid
31:17
L-Furose
32:37
Example of an N-Linked Oligosaccharide
33:21
Cell Membrane Structure
36:35
Glycolipids & Lipopolysaccharide
37:22
Structure Example
41:28
More Example Problems with Carbohydrates

40m 22s

Intro
0:00
Example 1
1:09
Example 2
2:34
Example 3
5:12
Example 4
16:19
Question
16:20
Solution
17:25
Example 5
24:18
Question
24:19
Structure of 2,3-Di-O-Methylglucose
26:47
Part A
28:11
Part B
33:46
Section 7: Lipids
Fatty Acids & Triacylglycerols

54m 55s

Intro
0:00
Fatty Acids
0:32
Lipids Overview
0:34
Introduction to Fatty Acid
3:18
Saturated Fatty Acid
6:13
Unsaturated or Polyunsaturated Fatty Acid
7:07
Saturated Fatty Acid Example
7:46
Unsaturated Fatty Acid Example
9:06
Notation Example: Chain Length, Degree of Unsaturation, & Double Bonds Location of Fatty Acid
11:56
Example 1: Draw the Structure
16:18
Example 2: Give the Shorthand for cis,cis-5,8-Hexadecadienoic Acid
20:12
Example 3
23:12
Solubility of Fatty Acids
25:45
Melting Points of Fatty Acids
29:40
Triacylglycerols
34:13
Definition of Triacylglycerols
34:14
Structure of Triacylglycerols
35:08
Example: Triacylglycerols
40:23
Recall Ester Formation
43:57
The Body's Primary Fuel-Reserves
47:22
Two Primary Advantages to Storing Energy as Triacylglycerols Instead of Glycogen: Number 1
49:24
Two Primary Advantages to Storing Energy as Triacylglycerols Instead of Glycogen: Number 2
51:54
Membrane Lipids

38m 51s

Intro
0:00
Membrane Lipids
0:26
Definition of Membrane Lipids
0:27
Five Major Classes of Membrane Lipids
2:38
Glycerophospholipids
5:04
Glycerophospholipids Overview
5:05
The X Group
8:05
Example: Phosphatidyl Ethanolamine
10:51
Example: Phosphatidyl Choline
13:34
Phosphatidyl Serine
15:16
Head Groups
16:50
Ether Linkages Instead of Ester Linkages
20:05
Galactolipids
23:39
Galactolipids Overview
23:40
Monogalactosyldiacylglycerol: MGDG
25:17
Digalactosyldiacylglycerol: DGDG
28:13
Structure Examples 1: Lipid Bilayer
31:35
Structure Examples 2: Cross Section of a Cell
34:56
Structure Examples 3: MGDG & DGDG
36:28
Membrane Lipids, Part 2

38m 20s

Intro
0:00
Sphingolipids
0:11
Sphingolipid Overview
0:12
Sphingosine Structure
1:42
Ceramide
3:56
Subclasses of Sphingolipids Overview
6:00
Subclasses of Sphingolipids: Sphingomyelins
7:53
Sphingomyelins
7:54
Subclasses of Sphingolipids: Glycosphingolipid
12:47
Glycosphingolipid Overview
12:48
Cerebrosides & Globosides Overview
14:33
Example: Cerebrosides
15:43
Example: Globosides
17:14
Subclasses of Sphingolipids: Gangliosides
19:07
Gangliosides
19:08
Medical Application: Tay-Sachs Disease
23:34
Sterols
30:45
Sterols: Basic Structure
30:46
Important Example: Cholesterol
32:01
Structures Example
34:13
The Biologically Active Lipids

48m 36s

Intro
0:00
The Biologically Active Lipids
0:44
Phosphatidyl Inositol Structure
0:45
Phosphatidyl Inositol Reaction
3:24
Image Example
12:49
Eicosanoids
14:12
Arachidonic Acid & Membrane Lipid Containing Arachidonic Acid
18:41
Three Classes of Eicosanoids
20:42
Overall Structures
21:38
Prostagladins
22:56
Thromboxane
27:19
Leukotrienes
30:19
More On The Biologically Active Lipids
33:34
Steroid Hormones
33:35
Fat Soluble Vitamins
38:25
Vitamin D₃
40:40
Vitamin A
43:17
Vitamin E
45:12
Vitamin K
47:17
Section 8: Energy & Biological Systems (Bioenergetics)
Thermodynamics, Free Energy & Equilibrium

45m 51s

Intro
0:00
Thermodynamics, Free Energy and Equilibrium
1:03
Reaction: Glucose + Pi → Glucose 6-Phosphate
1:50
Thermodynamics & Spontaneous Processes
3:31
In Going From Reactants → Product, a Reaction Wants to Release Heat
6:30
A Reaction Wants to Become More Disordered
9:10
∆H < 0
10:30
∆H > 0
10:57
∆S > 0
11:23
∆S <0
11:56
∆G = ∆H - T∆S at Constant Pressure
12:15
Gibbs Free Energy
15:00
∆G < 0
16:49
∆G > 0
17:07
Reference Frame For Thermodynamics Measurements
17:57
More On BioChemistry Standard
22:36
Spontaneity
25:36
Keq
31:45
Example: Glucose + Pi → Glucose 6-Phosphate
34:14
Example Problem 1
40:25
Question
40:26
Solution
41:12
More on Thermodynamics & Free Energy

37m 6s

Intro
0:00
More on Thermodynamics & Free Energy
0:16
Calculating ∆G Under Standard Conditions
0:17
Calculating ∆G Under Physiological Conditions
2:05
∆G < 0
5:39
∆G = 0
7:03
Reaction Moving Forward Spontaneously
8:00
∆G & The Maximum Theoretical Amount of Free Energy Available
10:36
Example Problem 1
13:11
Reactions That Have Species in Common
17:48
Example Problem 2: Part 1
20:10
Example Problem 2: Part 2- Enzyme Hexokinase & Coupling
25:08
Example Problem 2: Part 3
30:34
Recap
34:45
ATP & Other High-Energy Compounds

44m 32s

Intro
0:00
ATP & Other High-Energy Compounds
0:10
Endergonic Reaction Coupled With Exergonic Reaction
0:11
Major Theme In Metabolism
6:56
Why the ∆G°' for ATP Hydrolysis is Large & Negative
12:24
∆G°' for ATP Hydrolysis
12:25
Reason 1: Electrostatic Repulsion
14:24
Reason 2: Pi & Resonance Forms
15:33
Reason 3: Concentrations of ADP & Pi
17:32
ATP & Other High-Energy Compounds Cont'd
18:48
More On ∆G°' & Hydrolysis
18:49
Other Compounds That Have Large Negative ∆G°' of Hydrolysis: Phosphoenol Pyruvate (PEP)
25:14
Enzyme Pyruvate Kinase
30:36
Another High Energy Molecule: 1,3 Biphosphoglycerate
36:17
Another High Energy Molecule: Phophocreatine
39:41
Phosphoryl Group Transfers

30m 8s

Intro
0:00
Phosphoryl Group Transfer
0:27
Phosphoryl Group Transfer Overview
0:28
Example: Glutamate → Glutamine Part 1
7:11
Example: Glutamate → Glutamine Part 2
13:29
ATP Not Only Transfers Phosphoryl, But Also Pyrophosphoryl & Adenylyl Groups
17:03
Attack At The γ Phosphorous Transfers a Phosphoryl
19:02
Attack At The β Phosphorous Gives Pyrophosphoryl
22:44
Oxidation-Reduction Reactions

49m 46s

Intro
0:00
Oxidation-Reduction Reactions
1:32
Redox Reactions
1:33
Example 1: Mg + Al³⁺ → Mg²⁺ + Al
3:49
Reduction Potential Definition
10:47
Reduction Potential Example
13:38
Organic Example
22:23
Review: How To Find The Oxidation States For Carbon
24:15
Examples: Oxidation States For Carbon
27:45
Example 1: Oxidation States For Carbon
27:46
Example 2: Oxidation States For Carbon
28:36
Example 3: Oxidation States For Carbon
29:18
Example 4: Oxidation States For Carbon
29:44
Example 5: Oxidation States For Carbon
30:10
Example 6: Oxidation States For Carbon
30:40
Example 7: Oxidation States For Carbon
31:20
Example 8: Oxidation States For Carbon
32:10
Example 9: Oxidation States For Carbon
32:52
Oxidation-Reduction Reactions, cont'd
35:22
More On Reduction Potential
35:28
Lets' Start With ∆G = ∆G°' + RTlnQ
38:29
Example: Oxidation Reduction Reactions
41:42
More On Oxidation-Reduction Reactions

56m 34s

Intro
0:00
More On Oxidation-Reduction Reactions
0:10
Example 1: What If the Concentrations Are Not Standard?
0:11
Alternate Procedure That Uses The 1/2 Reactions Individually
8:57
Universal Electron Carriers in Aqueous Medium: NAD+ & NADH
15:12
The Others Are…
19:22
NAD+ & NADP Coenzymes
20:56
FMN & FAD
22:03
Nicotinamide Adenine Dinucleotide (Phosphate)
23:03
Reduction 1/2 Reactions
36:10
Ratio of NAD+ : NADH
36:52
Ratio of NADPH : NADP+
38:02
Specialized Roles of NAD+ & NADPH
38:48
Oxidoreductase Enzyme Overview
40:26
Examples of Oxidoreductase
43:32
The Flavin Nucleotides
46:46
Example Problems For Bioenergetics

42m 12s

Intro
0:00
Example 1: Calculate the ∆G°' For The Following Reaction
1:04
Example 1: Question
1:05
Example 1: Solution
2:20
Example 2: Calculate the Keq For the Following
4:20
Example 2: Question
4:21
Example 2: Solution
5:54
Example 3: Calculate the ∆G°' For The Hydrolysis of ATP At 25°C
8:52
Example 3: Question
8:53
Example 3: Solution
10:30
Example 3: Alternate Procedure
13:48
Example 4: Problems For Bioenergetics
16:46
Example 4: Questions
16:47
Example 4: Part A Solution
21:19
Example 4: Part B Solution
23:26
Example 4: Part C Solution
26:12
Example 5: Problems For Bioenergetics
29:27
Example 5: Questions
29:35
Example 5: Solution - Part 1
32:16
Example 5: Solution - Part 2
34:39
Section 9: Glycolysis and Gluconeogenesis
Overview of Glycolysis I

43m 32s

Intro
0:00
Overview of Glycolysis
0:48
Three Primary Paths For Glucose
1:04
Preparatory Phase of Glycolysis
4:40
Payoff Phase of Glycolysis
6:40
Glycolysis Reactions Diagram
7:58
Enzymes of Glycolysis
12:41
Glycolysis Reactions
16:02
Step 1
16:03
Step 2
18:03
Step 3
18:52
Step 4
20:08
Step 5
21:42
Step 6
22:44
Step 7
24:22
Step 8
25:11
Step 9
26:00
Step 10
26:51
Overview of Glycolysis Cont.
27:28
The Overall Reaction for Glycolysis
27:29
Recall The High-Energy Phosphorylated Compounds Discusses In The Bioenergetics Unit
33:10
What Happens To The Pyruvate That Is Formed?
37:58
Glycolysis II

1h 1m 47s

Intro
0:00
Glycolysis Step 1: The Phosphorylation of Glucose
0:27
Glycolysis Step 1: Reaction
0:28
Hexokinase
2:28
Glycolysis Step 1: Mechanism-Simple Nucleophilic Substitution
6:34
Glycolysis Step 2: Conversion of Glucose 6-Phosphate → Fructose 6-Phosphate
11:33
Glycolysis Step 2: Reaction
11:34
Glycolysis Step 2: Mechanism, Part 1
14:40
Glycolysis Step 2: Mechanism, Part 2
18:16
Glycolysis Step 2: Mechanism, Part 3
19:56
Glycolysis Step 2: Mechanism, Part 4 (Ring Closing & Dissociation)
21:54
Glycolysis Step 3: Conversion of Fructose 6-Phosphate to Fructose 1,6-Biphosphate
24:16
Glycolysis Step 3: Reaction
24:17
Glycolysis Step 3: Mechanism
26:40
Glycolysis Step 4: Cleavage of Fructose 1,6-Biphosphate
31:10
Glycolysis Step 4: Reaction
31:11
Glycolysis Step 4: Mechanism, Part 1 (Binding & Ring Opening)
35:26
Glycolysis Step 4: Mechanism, Part 2
37:40
Glycolysis Step 4: Mechanism, Part 3
39:30
Glycolysis Step 4: Mechanism, Part 4
44:00
Glycolysis Step 4: Mechanism, Part 5
46:34
Glycolysis Step 4: Mechanism, Part 6
49:00
Glycolysis Step 4: Mechanism, Part 7
50:12
Hydrolysis of The Imine
52:33
Glycolysis Step 5: Conversion of Dihydroxyaceton Phosphate to Glyceraldehyde 3-Phosphate
55:38
Glycolysis Step 5: Reaction
55:39
Breakdown and Numbering of Sugar
57:40
Glycolysis III

59m 17s

Intro
0:00
Glycolysis Step 5: Conversion of Dihydroxyaceton Phosphate to Glyceraldehyde 3-Phosphate
0:44
Glycolysis Step 5: Mechanism, Part 1
0:45
Glycolysis Step 5: Mechanism, Part 2
3:53
Glycolysis Step 6: Oxidation of Glyceraldehyde 3-Phosphate to 1,3-Biphosphoglycerate
5:14
Glycolysis Step 6: Reaction
5:15
Glycolysis Step 6: Mechanism, Part 1
8:52
Glycolysis Step 6: Mechanism, Part 2
12:58
Glycolysis Step 6: Mechanism, Part 3
14:26
Glycolysis Step 6: Mechanism, Part 4
16:23
Glycolysis Step 7: Phosphoryl Transfer From 1,3-Biphosphoglycerate to ADP to Form ATP
19:08
Glycolysis Step 7: Reaction
19:09
Substrate-Level Phosphorylation
23:18
Glycolysis Step 7: Mechanism (Nucleophilic Substitution)
26:57
Glycolysis Step 8: Conversion of 3-Phosphoglycerate to 2-Phosphoglycerate
28:44
Glycolysis Step 8: Reaction
28:45
Glycolysis Step 8: Mechanism, Part 1
30:08
Glycolysis Step 8: Mechanism, Part 2
32:24
Glycolysis Step 8: Mechanism, Part 3
34:02
Catalytic Cycle
35:42
Glycolysis Step 9: Dehydration of 2-Phosphoglycerate to Phosphoenol Pyruvate
37:20
Glycolysis Step 9: Reaction
37:21
Glycolysis Step 9: Mechanism, Part 1
40:12
Glycolysis Step 9: Mechanism, Part 2
42:01
Glycolysis Step 9: Mechanism, Part 3
43:58
Glycolysis Step 10: Transfer of a Phosphoryl Group From Phosphoenol Pyruvate To ADP To Form ATP
45:16
Glycolysis Step 10: Reaction
45:17
Substrate-Level Phosphorylation
48:32
Energy Coupling Reaction
51:24
Glycolysis Balance Sheet
54:15
Glycolysis Balance Sheet
54:16
What Happens to The 6 Carbons of Glucose?
56:22
What Happens to 2 ADP & 2 Pi?
57:04
What Happens to The 4e⁻ ?
57:15
Glycolysis IV

39m 47s

Intro
0:00
Feeder Pathways
0:42
Feeder Pathways Overview
0:43
Starch, Glycogen
2:25
Lactose
4:38
Galactose
4:58
Manose
5:22
Trehalose
5:45
Sucrose
5:56
Fructose
6:07
Fates of Pyruvate: Aerobic & Anaerobic Conditions
7:39
Aerobic Conditions & Pyruvate
7:40
Anaerobic Fates of Pyruvate
11:18
Fates of Pyruvate: Lactate Acid Fermentation
14:10
Lactate Acid Fermentation
14:11
Fates of Pyruvate: Ethanol Fermentation
19:01
Ethanol Fermentation Reaction
19:02
TPP: Thiamine Pyrophosphate (Functions and Structure)
23:10
Ethanol Fermentation Mechanism, Part 1
27:53
Ethanol Fermentation Mechanism, Part 2
29:06
Ethanol Fermentation Mechanism, Part 3
31:15
Ethanol Fermentation Mechanism, Part 4
32:44
Ethanol Fermentation Mechanism, Part 5
34:33
Ethanol Fermentation Mechanism, Part 6
35:48
Gluconeogenesis I

41m 34s

Intro
0:00
Gluconeogenesis, Part 1
1:02
Gluconeogenesis Overview
1:03
3 Glycolytic Reactions That Are Irreversible Under Physiological Conditions
2:29
Gluconeogenesis Reactions Overview
6:17
Reaction: Pyruvate to Oxaloacetate
11:07
Reaction: Oxaloacetate to Phosphoenolpyruvate (PEP)
13:29
First Pathway That Pyruvate Can Take to Become Phosphoenolpyruvate
15:24
Second Pathway That Pyruvate Can Take to Become Phosphoenolpyruvate
21:00
Transportation of Pyruvate From The Cytosol to The Mitochondria
24:15
Transportation Mechanism, Part 1
26:41
Transportation Mechanism, Part 2
30:43
Transportation Mechanism, Part 3
34:04
Transportation Mechanism, Part 4
38:14
Gluconeogenesis II

34m 18s

Intro
0:00
Oxaloacetate → Phosphoenolpyruvate (PEP)
0:35
Mitochondrial Membrane Does Not Have a Transporter for Oxaloactate
0:36
Reaction: Oxaloacetate to Phosphoenolpyruvate (PEP)
3:36
Mechanism: Oxaloacetate to Phosphoenolpyruvate (PEP)
4:48
Overall Reaction: Pyruvate to Phosphoenolpyruvate
7:01
Recall The Two Pathways That Pyruvate Can Take to Become Phosphoenolpyruvate
10:16
NADH in Gluconeogenesis
12:29
Second Pathway: Lactate → Pyruvate
18:22
Cytosolic PEP Carboxykinase, Mitochondrial PEP Carboxykinase, & Isozymes
18:23
2nd Bypass Reaction
23:04
3rd Bypass Reaction
24:01
Overall Process
25:17
Other Feeder Pathways For Gluconeogenesis
26:35
Carbon Intermediates of The Citric Acid Cycle
26:36
Amino Acids & The Gluconeogenic Pathway
29:45
Glycolysis & Gluconeogenesis Are Reciprocally Regulated
32:00
The Pentose Phosphate Pathway

42m 52s

Intro
0:00
The Pentose Phosphate Pathway Overview
0:17
The Major Fate of Glucose-6-Phosphate
0:18
The Pentose Phosphate Pathway (PPP) Overview
1:00
Oxidative Phase of The Pentose Phosphate Pathway
4:33
Oxidative Phase of The Pentose Phosphate Pathway: Reaction Overview
4:34
Ribose-5-Phosphate: Glutathione & Reductive Biosynthesis
9:02
Glucose-6-Phosphate to 6-Phosphogluconate
12:48
6-Phosphogluconate to Ribulose-5-Phosphate
15:39
Ribulose-5-Phosphate to Ribose-5-Phosphate
17:05
Non-Oxidative Phase of The Pentose Phosphate Pathway
19:55
Non-Oxidative Phase of The Pentose Phosphate Pathway: Overview
19:56
General Transketolase Reaction
29:03
Transaldolase Reaction
35:10
Final Transketolase Reaction
39:10
Section 10: The Citric Acid Cycle (Krebs Cycle)
Citric Acid Cycle I

36m 10s

Intro
0:00
Stages of Cellular Respiration
0:23
Stages of Cellular Respiration
0:24
From Pyruvate to Acetyl-CoA
6:56
From Pyruvate to Acetyl-CoA: Pyruvate Dehydrogenase Complex
6:57
Overall Reaction
8:42
Oxidative Decarboxylation
11:54
Pyruvate Dehydrogenase (PDH) & Enzymes
15:30
Pyruvate Dehydrogenase (PDH) Requires 5 Coenzymes
17:15
Molecule of CoEnzyme A
18:52
Thioesters
20:56
Lipoic Acid
22:31
Lipoate Is Attached To a Lysine Residue On E₂
24:42
Pyruvate Dehydrogenase Complex: Reactions
26:36
E1: Reaction 1 & 2
30:38
E2: Reaction 3
31:58
E3: Reaction 4 & 5
32:44
Substrate Channeling
34:17
Citric Acid Cycle II

49m 20s

Intro
0:00
Citric Acid Cycle Reactions Overview
0:26
Citric Acid Cycle Reactions Overview: Part 1
0:27
Citric Acid Cycle Reactions Overview: Part 2
7:03
Things to Note
10:58
Citric Acid Cycle Reactions & Mechanism
13:57
Reaction 1: Formation of Citrate
13:58
Reaction 1: Mechanism
19:01
Reaction 2: Citrate to Cis Aconistate to Isocitrate
28:50
Reaction 3: Isocitrate to α-Ketoglutarate
32:35
Reaction 3: Two Isocitrate Dehydrogenase Enzymes
36:24
Reaction 3: Mechanism
37:33
Reaction 4: Oxidation of α-Ketoglutarate to Succinyl-CoA
41:38
Reaction 4: Notes
46:34
Citric Acid Cycle III

44m 11s

Intro
0:00
Citric Acid Cycle Reactions & Mechanism
0:21
Reaction 5: Succinyl-CoA to Succinate
0:24
Reaction 5: Reaction Sequence
2:35
Reaction 6: Oxidation of Succinate to Fumarate
8:28
Reaction 7: Fumarate to Malate
10:17
Reaction 8: Oxidation of L-Malate to Oxaloacetate
14:15
More On The Citric Acid Cycle
17:17
Energy from Oxidation
17:18
How Can We Transfer This NADH Into the Mitochondria
27:10
Citric Cycle is Amphibolic - Works In Both Anabolic & Catabolic Pathways
32:06
Biosynthetic Processes
34:29
Anaplerotic Reactions Overview
37:26
Anaplerotic: Reaction 1
41:42
Section 11: Catabolism of Fatty Acids
Fatty Acid Catabolism I

48m 11s

Intro
0:00
Introduction to Fatty Acid Catabolism
0:21
Introduction to Fatty Acid Catabolism
0:22
Vertebrate Cells Obtain Fatty Acids for Catabolism From 3 Sources
2:16
Diet: Part 1
4:00
Diet: Part 2
5:35
Diet: Part 3
6:20
Diet: Part 4
6:47
Diet: Part 5
10:18
Diet: Part 6
10:54
Diet: Part 7
12:04
Diet: Part 8
12:26
Fats Stored in Adipocytes Overview
13:54
Fats Stored in Adipocytes (Fat Cells): Part 1
16:13
Fats Stored in Adipocytes (Fat Cells): Part 2
17:16
Fats Stored in Adipocytes (Fat Cells): Part 3
19:42
Fats Stored in Adipocytes (Fat Cells): Part 4
20:52
Fats Stored in Adipocytes (Fat Cells): Part 5
22:56
Mobilization of TAGs Stored in Fat Cells
24:35
Fatty Acid Oxidation
28:29
Fatty Acid Oxidation
28:48
3 Reactions of the Carnitine Shuttle
30:42
Carnitine Shuttle & The Mitochondrial Matrix
36:25
CAT I
43:58
Carnitine Shuttle is the Rate-Limiting Steps
46:24
Fatty Acid Catabolism II

45m 58s

Intro
0:00
Fatty Acid Catabolism
0:15
Fatty Acid Oxidation Takes Place in 3 Stages
0:16
β-Oxidation
2:05
β-Oxidation Overview
2:06
Reaction 1
4:20
Reaction 2
7:35
Reaction 3
8:52
Reaction 4
10:16
β-Oxidation Reactions Discussion
11:34
Notes On β-Oxidation
15:14
Double Bond After The First Reaction
15:15
Reaction 1 is Catalyzed by 3 Isozymes of Acyl-CoA Dehydrogenase
16:04
Reaction 2 & The Addition of H₂O
18:38
After Reaction 4
19:24
Production of ATP
20:04
β-Oxidation of Unsaturated Fatty Acid
21:25
β-Oxidation of Unsaturated Fatty Acid
22:36
β-Oxidation of Mono-Unsaturates
24:49
β-Oxidation of Mono-Unsaturates: Reaction 1
24:50
β-Oxidation of Mono-Unsaturates: Reaction 2
28:43
β-Oxidation of Mono-Unsaturates: Reaction 3
30:50
β-Oxidation of Mono-Unsaturates: Reaction 4
31:06
β-Oxidation of Polyunsaturates
32:29
β-Oxidation of Polyunsaturates: Part 1
32:30
β-Oxidation of Polyunsaturates: Part 2
37:08
β-Oxidation of Polyunsaturates: Part 3
40:25
Fatty Acid Catabolism III

33m 18s

Intro
0:00
Fatty Acid Catabolism
0:43
Oxidation of Fatty Acids With an Odd Number of Carbons
0:44
β-oxidation in the Mitochondrion & Two Other Pathways
9:08
ω-oxidation
10:37
α-oxidation
17:22
Ketone Bodies
19:08
Two Fates of Acetyl-CoA Formed by β-Oxidation Overview
19:09
Ketone Bodies: Acetone
20:42
Ketone Bodies: Acetoacetate
20:57
Ketone Bodies: D-β-hydroxybutyrate
21:25
Two Fates of Acetyl-CoA Formed by β-Oxidation: Part 1
22:05
Two Fates of Acetyl-CoA Formed by β-Oxidation: Part 2
26:59
Two Fates of Acetyl-CoA Formed by β-Oxidation: Part 3
30:52
Section 12: Catabolism of Amino Acids and the Urea Cycle
Overview & The Aminotransferase Reaction

40m 59s

Intro
0:00
Overview of The Aminotransferase Reaction
0:25
Overview of The Aminotransferase Reaction
0:26
The Aminotransferase Reaction: Process 1
3:06
The Aminotransferase Reaction: Process 2
6:46
Alanine From Muscle Tissue
10:54
Bigger Picture of the Aminotransferase Reaction
14:52
Looking Closely at Process 1
19:04
Pyridoxal Phosphate (PLP)
24:32
Pyridoxamine Phosphate
25:29
Pyridoxine (B6)
26:38
The Function of PLP
27:12
Mechanism Examples
28:46
Reverse Reaction: Glutamate to α-Ketoglutarate
35:34
Glutamine & Alanine: The Urea Cycle I

39m 18s

Intro
0:00
Glutamine & Alanine: The Urea Cycle I
0:45
Excess Ammonia, Glutamate, and Glutamine
0:46
Glucose-Alanine Cycle
9:54
Introduction to the Urea Cycle
20:56
The Urea Cycle: Production of the Carbamoyl Phosphate
22:59
The Urea Cycle: Reaction & Mechanism Involving the Carbamoyl Phosphate Synthetase
33:36
Glutamine & Alanine: The Urea Cycle II

36m 21s

Intro
0:00
Glutamine & Alanine: The Urea Cycle II
0:14
The Urea Cycle Overview
0:34
Reaction 1: Ornithine → Citrulline
7:30
Reaction 2: Citrulline → Citrullyl-AMP
11:15
Reaction 2': Citrullyl-AMP → Argininosuccinate
15:25
Reaction 3: Argininosuccinate → Arginine
20:42
Reaction 4: Arginine → Orthinine
24:00
Links Between the Citric Acid Cycle & the Urea Cycle
27:47
Aspartate-argininosuccinate Shunt
32:36
Amino Acid Catabolism

47m 58s

Intro
0:00
Amino Acid Catabolism
0:10
Common Amino Acids and 6 Major Products
0:11
Ketogenic Amino Acid
1:52
Glucogenic Amino Acid
2:51
Amino Acid Catabolism Diagram
4:18
Cofactors That Play a Role in Amino Acid Catabolism
7:00
Biotin
8:42
Tetrahydrofolate
10:44
S-Adenosylmethionine (AdoMet)
12:46
Tetrahydrobiopterin
13:53
S-Adenosylmethionine & Tetrahydrobiopterin Molecules
14:41
Catabolism of Phenylalanine
18:30
Reaction 1: Phenylalanine to Tyrosine
18:31
Reaction 2: Tyrosine to p-Hydroxyphenylpyruvate
21:36
Reaction 3: p-Hydroxyphenylpyruvate to Homogentisate
23:50
Reaction 4: Homogentisate to Maleylacetoacetate
25:42
Reaction 5: Maleylacetoacetate to Fumarylacetoacetate
28:20
Reaction 6: Fumarylacetoacetate to Fumarate & Succinyl-CoA
29:51
Reaction 7: Fate of Fumarate & Succinyl-CoA
31:14
Phenylalanine Hydroxylase
33:33
The Phenylalanine Hydroxylase Reaction
33:34
Mixed-Function Oxidases
40:26
When Phenylalanine Hydoxylase is Defective: Phenylketonuria (PKU)
44:13
Section 13: Oxidative Phosphorylation and ATP Synthesis
Oxidative Phosphorylation I

41m 11s

Intro
0:00
Oxidative Phosphorylation
0:54
Oxidative Phosphorylation Overview
0:55
Mitochondrial Electron Transport Chain Diagram
7:15
Enzyme Complex I of the Electron Transport Chain
12:27
Enzyme Complex II of the Electron Transport Chain
14:02
Enzyme Complex III of the Electron Transport Chain
14:34
Enzyme Complex IV of the Electron Transport Chain
15:30
Complexes Diagram
16:25
Complex I
18:25
Complex I Overview
18:26
What is Ubiquinone or Coenzyme Q?
20:02
Coenzyme Q Transformation
22:37
Complex I Diagram
24:47
Fe-S Proteins
26:42
Transfer of H⁺
29:42
Complex II
31:06
Succinate Dehydrogenase
31:07
Complex II Diagram & Process
32:54
Other Substrates Pass Their e⁻ to Q: Glycerol 3-Phosphate
37:31
Other Substrates Pass Their e⁻ to Q: Fatty Acyl-CoA
39:02
Oxidative Phosphorylation II

36m 27s

Intro
0:00
Complex III
0:19
Complex III Overview
0:20
Complex III: Step 1
1:56
Complex III: Step 2
6:14
Complex IV
8:42
Complex IV: Cytochrome Oxidase
8:43
Oxidative Phosphorylation, cont'd
17:18
Oxidative Phosphorylation: Summary
17:19
Equation 1
19:13
How Exergonic is the Reaction?
21:03
Potential Energy Represented by Transported H⁺
27:24
Free Energy Change for the Production of an Electrochemical Gradient Via an Ion Pump
28:48
Free Energy Change in Active Mitochondria
32:02
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Biochemistry
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books & Services

Lecture Comments (24)

3 answers

Last reply by: Professor Hovasapian
Wed Jan 17, 2018 3:32 AM

Post by Maryam Fayyazi on January 5, 2018

thanks for incredible lecture. I was wondering if you cover cell Biology as well?

2 answers

Last reply by: Sally Reina
Tue Sep 5, 2017 1:51 AM

Post by Sally Reina on August 29, 2017

Hi Professor Raffi Hovasapian,

For Complex IV, it pumps out 2H+, but I am confused by the figure because it showing 4H+ being pumped into the intermembrane space. Can you explain this please?

Thanks!
Sally

1 answer

Last reply by: Professor Hovasapian
Fri Apr 7, 2017 6:52 PM

Post by Nikhat Siddiqi on March 25, 2017

Can you please give me a lecture on "Transport across biomembranes: free energy content of transmembrane concentration gradients for uncharged and charged solutes mathematical relationship"

Thanks

0 answers

Post by Phil Beauchamp on July 11, 2014

What about charge balance?  2 electrons total -2 in charge move from a NADH through the electron transport chain but they are moving +10 to the IM?  Also, when the electrons move, they seem to usually move as hydride, moving a proton with them (or picking up one after a single electron transfer) yet the hydrogen seems like it is considered as H+.  It is a little confusing.

0 answers

Post by Professor Hovasapian on September 10, 2013

Hi Vinit,

The answer is  thermodynamics.  The oxidation of 1 mol of NADH to NAD+ has 220 kJoules of Free energy. Some of this energy is lost simply by the inherent inefficiency of the proton pump. However, most of it ( about 200 joules is used to pump out those protons. This 200 kjoules is used to pump 10 moles of protons. So 1 molecule of NADH oxidized allows 10 H+ protons.

So the number 10 just happens to reflect the Total Free Energy available to do work, and the fraction of that which actually does the work of pumping out protons.

Hope that helps.

Raffi

1 answer

Last reply by: Professor Hovasapian
Tue Sep 10, 2013 8:18 PM

Post by Vinit Shanbhag on September 9, 2013

Thanks for the answer. Another question I had was, why only 10 electrons are pumped out per NADH molecule, I know that 4 protons make 1ATP by the ATP synthase, so 10 will make 2.5. Thanks.

0 answers

Post by Vinit Shanbhag on September 7, 2013

Hi, forgot to mention that your lectures r really helpful. Thanks a lot.

1 answer

Last reply by: Professor Hovasapian
Sun Sep 8, 2013 4:26 AM

Post by Vinit Shanbhag on September 7, 2013

difference between atp synthase and atpase?
does krebs cycle require oxygen? how is it dependent on ETC for its byproducts?

1 answer

Last reply by: Professor Hovasapian
Fri Apr 26, 2013 1:44 AM

Post by Kenshin Kenshin on April 25, 2013

Hi, I was wondering in the equilibrium section of the new pchem vids you were going to make are you going to go over the acid/base equilibrium rxn in the more in depth version for pchem compared to gen chem?

5 answers

Last reply by: Professor Hovasapian
Sun Apr 21, 2013 10:04 PM

Post by Brian Phung on April 21, 2013

Hi I was wondering if there would be any vid on signaling pathway?

Oxidative Phosphorylation II

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Complex III 0:19
    • Complex III Overview
    • Complex III: Step 1
    • Complex III: Step 2
  • Complex IV 8:42
    • Complex IV: Cytochrome Oxidase
  • Oxidative Phosphorylation, cont'd 17:18
    • Oxidative Phosphorylation: Summary
    • Equation 1
    • How Exergonic is the Reaction?
    • Potential Energy Represented by Transported H⁺
    • Free Energy Change for the Production of an Electrochemical Gradient Via an Ion Pump
    • Free Energy Change in Active Mitochondria

Transcription: Oxidative Phosphorylation II

Hello and welcome back to Educator.com, and welcome back to Biochemistry.0000

Today, we are going to continue our discussion of oxidative phosphorylation.0004

In the previous lesson, we looked at complex 1, complex 2; we gave a little bit of an overview of what was going on.0008

Now, we are going to move on to the rest of the electron transport chain beginning with complex 3.0014

OK, complex 3, let's see what we have here.0020

Now, we have all of these high-energy electrons that are collected by the molecule ubiquinone, and now, it is in the form of ubiquinol, its reduced form.0033

Now, it is going to pass on its electrons.0042

It is going to pass its electrons to cytochrome c, and here is how it is going to be.0048

Let's go ahead and give a name to this.0055

This is called cytochrome bc1 complex.0059

It is also called its formal name Q:citochrome c oxidoreductase.0069

This is the name of the complex; normally, we just call it the cytochrome bc1 complex.0087

That is the common name; the formal name, when you see this :Q to cytochrome, that means something is being transferred from Q to cytochrome c, and it is an oxidoreductase.0092

Oxidoreductase, you remember from the classification, it involves the transfer of electrons.0103

OK, in the complex 3, in this particular case, electron transfer, it takes place in 2 steps.0110

It is really an unusual complex.0122

OK, the first step, what you have is a molecule of QH2.0130

Now, it has its electrons; what it does, it releases its hydrogen ions into the inter-membrane space.0136

Again, this is part of the proton pump quality of complex 3.0145

It releases the 2 Hs into here.0150

Well, one of its electrons, it gives it over to ultimately cytochrome c, and we will talk about the actual sequence in a second; but it goes from Q to cytochrome c.0155

The other electron, now, what it does is it gives it over to another molecule of just plain old Q, and what ends up happening is this Q ends up turning into the QH radical that we talked about earlier.0166

Now, another molecule of QH2 diffuses through the bilayer.0182

It release its 2 hydrogen ions into solution.0187

Now, we have a total of 4 hydrogen ions being passed into the inter-membrane space.0192

It, again, gives 1 electron to Q.0198

It passes it to cytochrome c; it gives its other electron over to this radical, and this radical, now, ends up becoming QH2.0204

In the second step, 1 molecule of QH2 is used up.0212

1 molecule of QH2 is created; there is no net gain or loss of QH2.0218

Ultimately, it is only this 1 molecule of QH2 that ends up passing its electrons- 1 here to cytochrome c, the other here, another 1 to cytochrome c, the other here.0225

We have actually passed 2 electrons, and we have pumped 4 protons into the matrix.0235

That is what is happening here; complex 3, well, it is definitely not altogether that easy to follow.0242

There is a lot going on with complex 3; let's talk about what happens here.0249

Electron transfer takes place in 2 steps.0253

The first step, a molecule of QH2 - the reduced form of ubiquinone, which is called ubiquinol - releases 2 hydrogen ions to the inter-membrane space.0257

OK, that is the P side- the positive side.0279

Now, 1 electron passes as follows.0284

This is the inner workings of the complex: QH2 to an iron sulfur protein to cytochrome c1 and ultimately to cytochrome c.0292

This is the actual path of the electron, and 1 electron passes as follows: QH2 to cytochrome b to Q, which, now, becomes QH radical.0307

OK, the first electron passes from QH2; this QH2 and this QH2, they are the same.0347

One electron, it goes from an iron sulfur protein to cytochrome c1 to cytochrome c.0354

It is, now, here; the other electron passes to a cytochrome b and then, to Q, which, now, becomes QH- this Q radical.0360

That is what that becomes; now, for step 2, another QH2 molecule, it does the same thing.0371

It does the exact same thing; it does the same thing.0390

It releases 2 hydrogen ions into the inter-membrane space.0400

Well, 1 of the electrons passes as QH2, iron sulfur protein, cytochrome c1 to cytochrome c, and the second electron, it passes as QH2 - this is the same QH2, 1 electron goes 1 way, 1 electron goes the other way - to cytochrome b; but now, it goes to the radical, which, now, becomes our QH2 again.0410

In step 2, 1 QH2 is used, and 1 is created.0468

So, there is no net gain or loss.0490

OK, and like complex 1, complex 3 is a proton pump, hydrogen ion pump- that is it.0494

That is all that is going on there; OK, now, let's take a look and move on to complex no. 4.0520

OK, this is complex 4.0529

The movement is now from cytochrome c.0537

The electrons are going to finally make their way to O2- the final destination of these electrons.0541

The name of this is cytochrome oxidase.0547

OK, let's talk a little bit about...I want to say something about the oxidase.0556

An oxidase is a general class of enzymes that catalyze oxidations, where O2 is the electron acceptor, but O, itself, oxygen atoms, do not appear in the product.0565

Both atoms of oxygen end up being reduced to water.0622

One atom takes 2 electrons and 2 hydrogens to become 1 molecule of water.0626

The other oxygen atom takes another 2 electrons and another 2 hydrogen ions to become water.0630

Oxygen, itself, does not show up anywhere; it is pure oxidation up here in the product.0637

OK, now, let's see what actually goes on here.0645

In this particular case, this is also going to, sort of, happen in 2 steps.0654

What you see here, though, is the final result.0659

Now, you have this cytochrome c; all of the electrons have been passed to cytochrome c.0665

Cytochrome c is like a ubiquinone in a sense that it is a mobile electron carrier.0670

Again, complex 3, complex 4, we need to get the electrons from here to here.0678

Cytochrome c is what moves on the lipid bilayer, through the lipid bilayer.0682

And again, it is just another molecule that carries electrons.0690

It carries/has 2 electrons, moves over here, gives up 2 electrons, moves back, takes 2 electrons, just back and forth- that is it.0694

It does the same thing; it just an electron shuttle is what it is.0700

The net effect is the following; 4 cytochrome cs pass their electrons to, this time, a copper-copper center, passes it on to a heme group, passes the electron to another heme group, passes the electron actually to a heme copper center, and now, these electrons, here is where O2 comes in.0705

O2 + 4 hydrogen ions plus these 4 electrons is reduced to 2 molecules of water.0730

In the process, also 4 hydrogen ions is pumped from the matrix into the inter-membrane space.0737

This is the net effect of what complex 4 does.0744

Cytochrome c passes its electrons ultimately to O2, reduces both atoms of oxygen in the O2 molecule to water.0748

OK, that is very, very important- 4 protons, 4 electrons, 2 each to form waters.0758

Now, we will go ahead and do a breakdown of the individual process.0766

Again, an oxidase is a general class of enzymes that catalyze oxidations where O2 is the electron acceptor, but O atoms do not appear in the product.0770

OK, now, this is different from the mixed-function oxidase that we saw earlier for the phenylalanine hydroxylase reaction.0779

Remember the first reaction of the catabolism for phenylalanine?0788

That enzyme, the phenylalanine hydroxylase, is also called a monooxygenase because it uses O2 as the electron acceptor, but one of the oxygens actually ends up in the product.0794

The phenylalanine becomes tyrosine; the other oxygen atom ends up being reduced to water.0808

In this case, an oxidase, both atoms end up getting reduced to water.0814

That is the difference; even though we call this an oxidase, that other one...you remember, we called it a mixed-function oxidase?0820

That is a really unfortunate, sort of, common name for it- mixed-function oxidase.0828

You will often hear it called a mixed-function oxidase.0831

Really, it is more proper to refer to it as a monooxygenase.0837

This is strictly an oxidase; I know, enzyme names, it is enough to make you want to pull your hair out.0841

Sorry about that; OK, now, let's go ahead and talk about this.0847

Let's see; the first step, we have 2 cytochrome c molecules.0857

Two electrons are passed to this copper-copper center, and then, these electrons are passed to something called heme A.0858

These electrons are passed to something called heme a3.0867

Actually, I am going to draw it a little bit this way.0870

I am going to go to heme a3CuB.0874

It is a heme copper center, and from here, the electrons are passed to O2.0903

However, the O2, it actually becomes O22-.0912

It is not fully reduced yet; now, 2 more cytochrome cs deliver 2 more electrons, and with 4 hydrogen ions taken up from solution, taken up from the matrix, this O22- now, it becomes 2 molecules of water.0920

OK, the 2 electrons that are passed from the 2 cytochrome cs only produces O22-.0968

Two other electrons from 2 other cytochrome cs pass through the same process, and now, the O22- is converted to 2 molecules of water.0974

And, of course, along the way - again, complex 4 is a proton pump - 2 H+s are transported into the inter-membrane space.0986

We had 4 protons from complex 1 being transported, 4 protons from complex 3 being transported, and now, 2 protons from complex 4 being transported.1010

This is all from the transfer of 2 electrons from NADH from the beginning of the electron transport chain.1019

For every 2 electrons that make it through the electron transport chain, 10 hydrogen ions are transported across the membrane.1025

That is a lot; that is a lot.1033

OK, now, let's see what it is that we have got here.1037

We have done complex 1, complex 2; now, let's go ahead and do a quick little summary, so that we know where it is that we stand.1042

NADH goes ahead and delivers its electrons to complex 1, and these electrons are passed to ubiquinone.1051

Four protons are pumped into the inter-membrane space.1059

Let's do this in...that is OK; let's go ahead and do this in black.1065

We have 4 hydrogen ions there; the succinate passes its electrons through FAD, again, to ubiquinone.1070

Complex 2 is not a proton pump; complex 3, the ubiquinone passes its electrons through complex 3 to cytochrome c, and in the process, we have pumped in, again, 4 hydrogen ions from the matrix to the inter-membrane space.1080

Cytochrome c passes its electrons through complex 4.1098

The electron transport chain, it reduces a molecule of O2 to 2 molecules of water.1102

Here, they show the stoichiometry is 1/2, but that is not a problem; and in the process, we end up transferring 2 hydrogen ions.1109

Now, we have 4, 4, 2; we have 10 hydrogen ions in the inter-membrane space.1119

This is the positive side; this is the negative side.1124

These protons, they want very badly to go over here both for concentration reasons and for potential reasons.1128

There is a build-up of charge, and there is a concentration gradient.1134

These protons fly through this molecule called ATP synthase.1138

Downhill, that extra energy is used to actually produce the ATP from adenosine diphosphate and inorganic phosphate.1143

Let's take a look exactly what is going on here, so equation 1.1154

Let's see if we can quantify this a little bit.1159

We have NADH + H+ + 1/2 O2 goes to NAD+ + H2O.1163

There is our H2O; there is our H2O.1175

This is per mole of NADH; per mole of NADH, we produce 1mol of water.1179

Perhaps it is better written if you like, if you do not like this 1/2, it is up to you because it might be better written as 2 NADH.1186

Each NADH deliver 2 electrons; 2 NADH, we have delivered 4 electrons.1202

We have pumped 20 hydrogen ions; we are going to end up producing this many waters.1207

2 NADH + 2 H+ + O2 produces 2 NAD+ + 2 H2O.1212

OK, I guess the question is: "how exergonic is this reaction?".1227

This flow of electrons, again, we said that it is exergonic.1237

It is this giving up of energy, that energy is what is used to actually produce the proton gradient that ends up ultimately falling back down.1240

That energy is used to fall back down; that is where that energy is used to produce the ATP.1252

Well, we want to see how exergonic this reaction is, the transfer of electrons.1258

How exergonic is this reaction?1264

Well, we know that ΔG is equal to -N x F x that, right?1272

The free energy of a particular process when there is a potential difference is the number of electrons transferred times the Faraday constant times the actual potential difference.1283

Well, let's see what this is; let's do a little bit of a calculation here.1296

Let's rewrite the equation: ΔG is equals to -N x F x that.1300

Well, we know what N is; we are talking about the transfer of 2 electrons.1310

We know what the Faraday constant is; it is 96,485J/V.mol.1315

OK, now, the...that is OK.1326

I will do it here; the potential for the NAD+ NADH, oxidation-reduction pair is -0.320V, and the potential for the O2 to H2O pair, that equals 0.816V.1332

The net, the reaction, this minus that, this minus that, this minus the minus that, it is 0.816 + the 0.320 gives me a total of 1.14V.1359

That is the potential difference here and the transfer of these electrons across the electron transport chain.1374

1.14V- that is huge, absolutely huge.1380

Now, let's go ahead and put this together; our ΔG, the amount of free energy that we are actually releasing that is available for other work is going to be -2 x 96,485J/V.mol x 1.14V.1384

And now, what I am going to do is I am going to multiply this; because this is per mole, we wrote our equation as 2 NADH.1411

I am just going to go ahead and multiply this by 2 because I want to do it for 2 moles.1418

When you end up doing this, you end up getting -440kJ.1425

2mol of NADH ends up producing, ends up releasing 440kJ of free energy.1435

This free energy is what is used to transfer the protons from the matrix to the inter-membrane space.1446

Now, this free energy is what is used to pump hydrogen ion out of the matrix.1454

Again, this 440kJ, this is what is coming from just those 4 moles of electrons traveling through the electron transport chain, from complex 1 all the way to complex 4.1480

In the process, in reaching oxygen, they actually released 440kJ of energy that can be used for something else.1498

This free energy is what is used to pump the hydrogen ions out of the matrix and into the inter-membrane space against both a concentration and an electrical gradient.1508

In other words, you have this membrane, and here, you have the matrix; and here, you have the inter-membrane space.1540

Well, you are trying to separate, you are trying to take all of this hydrogen ion and bring them all to this side.1553

You are trying to create; you are doing something that is unnatural.1562

It is not going to happen spontaneously; therefore, you need energy to actually do this.1566

You need to put in energy to run a process that is not going to happen naturally.1570

Naturally, the system wants to be at equilibrium; what you are doing is you are taking all these hydrogen ions, and you are pumping them, and you are putting them on 1 side of a barrier.1577

Now, you have a whole bunch of positive charge, a whole bunch of negative charge.1585

Not only have you separated charge, but you have also separated species.1589

Now, you have hydrogen ion here, no hydrogen ion here.1593

There is a concentration gradient, and there is an electrical gradient; you need energy to support that to make sure that it all stays on this side.1597

You are creating a bunch of potential energy, and now, when we open the floodgate of ATP synthase, all of that potential energy is going to release and create ATP.1605

All of this energy is used to do this, to run an unnatural process, to create this gradient, and as you create the gradient, you are making it actually harder and harder to pump protons.1614

As you separate the charge, as you move the concentration of hydrogen ion from 1 side to the next, you are making it harder for more of it to happen.1626

That is where this energy is going; OK, now, let's see what we have got.1635

Let me see; OK, now, the potential energy represented by these transported hydrogen ions, which are, now, ready to fall back down their gradient, is 2-fold.1645

You have the chemical part; that is the concentration difference.1698

That is the concentration of hydrogen ion on 1 side, virtually no concentration of hydrogen ion on the other side, and it is also electrical.1706

It is a separation of charge; you are creating a positive charge on one side of the membrane and negative charge on the other.1718

This is a lot of potential energy here; OK, now, we have an equation.1725

The free energy change for the production of an electrochemical gradient like this when you actually do this, when you pump an ion from one side of a membrane to the other side of the membrane, we have an expression for actually the free energy that is available from this.1736

The free energy change for the production of an electrochemical gradient via an ion pump is the following.1760

ΔG is equal to RT times the natural logarithm of c1 / c2 + Z, faraday constant, delta phi.1785

Let's talk about what some of this is; now, c1 and c2, they represent the concentrations of the ions on either side of the membrane.1798

c2 represent the concentrations of the hydrogen ion in the 2 compartments, and c1 is greater than c2.1809

In other words, we need this thing to be greater than 1.1835

c1, the concentration 1, that is the concentration of hydrogen ion in the inter-membrane space.1838

Concentration 2 is the concentration of hydrogen ion in the mitochondrial matrix.1844

OK, Z is the absolute value of the charge of the ion, which in this case is just +1.1851

It is just +1 in this case.1873

Hydrogen ion...well, yes, delta phi, now, delta phi is the transmembrane potential difference in volts.1877

In other words, once we actually have that separation of charge, a whole bunch of hydrogen ion, a whole bunch of positive, a whole bunch of negative, there is a potential difference.1900

We can measure that potential difference, and in this particular case, we actually have all of these numbers.1907

In active mitochondria, as it turns out - well, we are not going to worry about what the potential difference is, let's just move on to... - once we actually put the numbers in, this ΔG is approximately equal to about 20kJ/mol of hydrogen ion.1915

Well, since 2 electrons transfer 10 hydrogen ions, they pump - OK - 10 x 20.1950

This is about 200kJ/mol of NADH.1967

Well, since we decided to use the stoichiometry of 2 NADH, this is about 400kJ.1974

With 2mol of NADH, in other words, with 4 electrons transferred, with 20 hydrogen ions pumped across the membrane, ΔG approximately equals about 400kJ.1984

We said that the electrons, in moving through the electron transport chain, they release about 440kJ of energy per 2mol of NADH.2008

We have taken that energy, and we have preserved it.2024

Instead of just letting it dissipate as heat, we have used about 400kJ of that energy to actually produce this proton gradient.2028

Now that that proton gradient has...now this is potential energy, there is this 400kJ of energy that once these protons, once we open up the ATPase of molecule, these protons are going to want to fall back down their gradient.2038

They want to get to the other side from the inner membrane space.2053

Here is the membrane; they want to get to the matrix.2057

There is all of this 400kJ of energy that we have used from the 440 to pump to protons, but now that they are there, we have created this gradient.2061

Now, they want to fall back down; now, this 400kJ is actually potential energy, which can be converted into work.2070

This work is what produces the ATP; it is what builds the ATP from the ADP and the inorganic phosphate.2078

Of the 440kJ from the electron transport chain, about 400kJ is preserved as the proton gradient, and this is ready to be unleashed in the synthesis of adenosine triphosphate; and that is all that is happening- that is it.2089

This is a complete discussion of oxidative phosphorylation.2142

Once again, high-energy electrons, as they pass through the electron transport chain, they give up all of that energy.2146

The body uses that energy to pump protons and to create a proton gradient.2152

Now that that proton gradient is created, it has taken that energy, and now, it is potential energy.2158

Now, when protons fall back down their gradient going back into the matrix from the inter-membrane space, we are going to use that 400kJ to actually create ATP molecules that are going to be pumped out.2164

The body is going to use them however they see fit- that is it.2177

That is oxidative phosphorylation; thank you so much for joining us here at Educator.com.2181

We will see you next time, bye-bye.2185

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.