For more information, please see full course syllabus of Math Analysis
For more information, please see full course syllabus of Math Analysis
Discussion
Answer Engine
Study Guides
Download Lecture Slides
Table of Contents
Transcription
Related Books
Addition and Subtraction Formulas
- Addition and subtraction formulas
cos(A −B) = cosA cosB + sinA sinB cos(A + B) = cosA cosB − sinA sinB sin(A −B) = sinA cosB − cosA sinB sin(A + B) = sinA cosB + cosA sinB - Cofunction identities
cos ( π 2−x ) = sinx sin ( π 2−x ) = cosx
Main formulas:
Example 1:
Derive the formula for cos(A−B) without using the other addition and subtraction formulas.Example 2:
Use the addition and subtraction formulas to find the cosines and sines of (π/12)R and 105° .Example 3:
Use the addition and subtraction formulas to prove the following identity:
|
Example 4:
Use the formula for cos(A−B) and the cofunction identities to derive the other three addition and subtraction formulas.Example 5:
Convert 75° and -15° to radians and use the addition and subtraction formulas to find their cosines and sines.Addition and Subtraction Formulas
Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.
- Intro
- Addition and Subtraction Formulas
- Cofunction Identities
- Example 1: Derive the Formula for cos(A-B)
- Example 2: Use Addition and Subtraction Formulas
- Example 3: Use Addition and Subtraction Formulas to Prove Identity
- Extra Example 1: Use cos(A-B) and Cofunction Identities
- Extra Example 2: Convert to Radians and use Formulas
- Intro 0:00
- Addition and Subtraction Formulas 0:09
- How to Remember
- Cofunction Identities 1:31
- How to Remember Graphically
- Where to Use Cofunction Identities
- Example 1: Derive the Formula for cos(A-B) 3:08
- Example 2: Use Addition and Subtraction Formulas 16:03
- Example 3: Use Addition and Subtraction Formulas to Prove Identity 25:11
- Extra Example 1: Use cos(A-B) and Cofunction Identities
- Extra Example 2: Convert to Radians and use Formulas
Math Analysis Online
Transcription: Addition and Subtraction Formulas
Ok we are here to try more examples of the addition and subtraction formulas.0000
This time we are going to use the formula for cos(A-B) and the co function identities to derive the other three addition and subtraction formulas.0007
If you remember back in the previous set of examples, we proved the formula for cos(A-B).0016
We did it without using the other addition and subtraction formulas.0024
We are not getting trapped in any circular loops of logic.0028
We really did prove the cos(A-B) from scratch.0031
And now that we got that available to us, we are going to start with that formula and we are going to try to derive all the others.0035
Hopefully, it would be easier than the original proof of the cos(A-B) formula.0044
Let us remember what that formula is because we are allowed to use it now.0050
The cos(A+B) is equal to cos A cos B + sin A sin B, we are allowed use that.0055
I want to derive the other three formulas.0070
I'm going to start with cos(A+B) and I'm going to write that as cos((A-(-B)).0073
I'm gong to write in addition, in terms of a subtraction.0079
The point of that is now I can use my subtraction formula.0091
So, this is cos A. I'm just going to invoke this formula above except whenever I see a B, I will change it to (-B).0095
I have cos A cos(-B) + sin A sin(-B).0107
Remember, cosine is not even a function.0125
That means cos(-x) is the same as cos(x).0128
Sine is an odd function, sin(-x) is equal to -sin(x), I got cos A and cos(-B), but cos(-B) is the same as cos B.0137
Now sin A and sin -B, sine is odd so sin(-B) is -sin B.0156
But look, now I got cos(A+B) is equal to cos A cos B - sin A sin B, that is the formula for cos(A+B).0169
I was able to do that much more quickly than we were able to prove the original formula for cos(A-B).0180
Let us see how that works for sin(A+B).0188
Now, I'm going to have to bring in the co function identities, let me remind you what those are.0194
Those say that cos(pi/2)-x is the same as sin(X), sin(pi/2)-x is equal to cos(x).0198
Somehow we are going to use those to derive the sin formulas from the sin formulas.0215
The way we do that is I have sin(A+B), I'm going to use the first co function identity and write that as cos((pi/2-(A+B)).0221
That is by the first co function identity.0238
Now, that is cos(pi/2-A). I am going to group those two terms together and then -B, because it was minus the quantity of A+B.0241
I'm going to use my cos subtraction formula, this one that we started with.0255
cos, I am going to substitute n instead of A-B, I have (pi-2)-(A-B).0263
So, this is cos of the first term, cos(pi/2-A), cos of the second term is B + sin of the first term x sin of the second term.0273
But now, cos(pi/2-A) again using the co function identity is just sin A, sin A cos B.0293
Now, sin(pi/2-A) using the co function identity at the second co function identity is cos A x B.0305
Now we got the addition formula for sin, because we started with sin(A+B) and we reduced it down to sin A cos B + cos A sin B.0318
That is where the addition formula for sin comes in.0330
Finally, sin(A-B) we are going to do the same trick that we did for cos(A+B).0334
We will write this as sin, instead of writing it as a subtraction, we will think of it as adding a negative.0344
This is sin A - (-), I'm sorry A + (-B).0355
The point of that is that we can then invoke the sin formula that we just proved, we got sin(something +something).0365
According to the sin formula that we just proved, it is the sin of the first one x the cos of the second one which is (-B) + cos of the first one x sin of second one which is (-B).0372
Now again, we are going to use the odd and even properties.0390
This is sin A, cos (-B), cos does not even function so that is cos B + cos A.0394
Actually I should have said plus because look we have sin (-B) and sin (-x) is -sin(x). This is -cos A sin B.0406
But now, we started with sin(A-B) and we derived sin A cos B - cos A sin B.0418
That is exactly the subtraction formula for sin.0429
In each one of those identities, we did not use anything external.0434
We just started with the identity for cos(A-B) and then we made some clever substitutions to figure out cos(A+B), sin(A+B), sin(A-B).0438
Just making little substitutions into the one formula that we started with to get the formulas for the other three expressions.0454
Remember, it was a lot of work to prove that original formula for cos(A-B).0464
But once we have that one we can sort of milk it over and over again to get the other three formulas.0469
Extra example 2, which is to convert 75 degrees and -15 degrees to radians and we will use the addition and subtraction formulas to find the cos and sin.0000
So, 75 degrees, we will start out with that one.0014
Remember, the conversion formula is pi/180, that simplifies down to 5pi/12, that is not a common value.0020
I do not know the cos and sin of 5pi/12.0034
I‘m going to write that as a combination of two angles that I do know, that is (pi/4 + pi/6).0040
That is because pi/4 is 3pi/12 and pi/6 is 2pi/12 and you put them together and you got 5pi/12.0044
The key point of that is the pi/4 and pi/6 are common values.0060
I know the sin and cos(pi/4 and pi/6), I have memorized them and hopefully, you have memorized them as well.0066
Once I use my addition and subtraction formulas I can figure out the sin and cos of 5pi/12.0074
Let me remind you the addition and subtraction formulas we will be using.0081
Here, we are going to find cos(A+B) which is(cos A cos B) – (sin A sin B).0085
I’m going to go ahead and write the formula for sin(A+B).0103
It is equal to (sin A cos B) +(cos A sin B).0110
What is invoked those here we are trying to find the cos(5pi/12) which is the same as the cos(pi/4 + pi/6).0122
I’m going to use the cos addition formula cos(pi/4) cos(pi/6) – sin(pi/4) sin(pi/6).0138
All of those are common values, I have got those all computed to memory.0159
This will be very quick to finish from here.0163
This is cos(pi/4) I remember is square root of 2/2, cos(pi/6), I remember is square root of 3/2 – sin(pi/4) is root 2/2, sin(pi/6) is just ½.0166
If I put those together the common denominator there is 4, (root 2 x root 3 is 6) – (root 2 x 1).0182
That is my cos(5pi/12) which is the same as the cos of 75 degrees.0195
Let us find the sin now, sin(5pi/12) is equal to sin(pi/4) + pi/6, which by the addition formula for sin is sin of the first one pi/4, (cos of the second one pi/6) + (cos of the first one x sin of the second one).0202
And now again those are common values, I remember them all.0234
Sin(pi/4) is root 2/2, cos(pi/6) is root 3/2, cos(pi/4) is also root 2/2, sin(pi/6) is just ½.0237
I put these together over common denominator 4 and I get (root 6 + root 2/4).0257
What to remember those two values because we are actually going to use them in the next part.0271
The next part is to figure out -15 degrees, we want to start out by converting that to radians.0277
-15 degrees we multiply that by our conversion factor pi/180, that gives us 15/180, simplifies down to 112, so we get –pi/12 radians.0283
Now, there are two ways we could proceed from here. We can write –pi/12 as (pi/6 – pi/4) and that is because pi/6 is 2pi/12, pi/4 is 3pi/12. You subtract them and you will get –pi/12.0307
We could do at that way or we can write –pi/12 as (5pi/12 – pi/2- 6pi/12).0334
I want to do it that way because I want to practice that plus I think the sin and cos of pi/2 are a little bit easier to remember, I want to practice that method.0341
Let me write the formulas for sin and cos because we are going to be using those.0351
Cos(A-B) is(cos A cos B) + (sin A sin B) and sin(A-B) is equal to (sin A cos B) – (cos A sin B).0356
I’m going to be using those subtraction formulas the cos(-pi/12).0390
If we use the second version that is cos(5pi/12-pi/2).0399
And now by the subtraction formula that is (cos(5pi/12) x cos(pi/2)) +(sin(5pi/12) x sin(pi/2)).0408
Now look at this, the cos(pi/2), remember that is cos 90 degrees, the x coordinate of 90 degrees angle that is 0.0431
That whole term drops out, sin(pi/2) is 1.0441
This whole thing simplifies down to sin(5pi/12) and we worked that out on the previous page.0447
The sin(pi/12) we did this work before, that was the (square root of 2) + (square root of 6)/4.0460
We are invoking previous work there, this would be something that I would not have remembered but because I just work that out in the previous problem I remember the answer now.0470
We are going to try to figure out the sin(-pi/12) the same way.0485
So, sin(-pi/12) is the same as sin(5pi/12) – pi/2, because it is (5pi/12 – 6pi/12).0489
Using the subtraction formula for sin, that is sin of the first one, which is sin(5pi/12) x cos of the second one (pi/2) – cos of the first one (5pi/12) x sin of the second one (pi/2).0506
The point of that is that the pi/2 values are very easy.0526
I know that the cos, just like before is 0 and the sin is 1.0529
This whole thing simplifies down to –cos(5pi/12).0539
Again, I worked out the cos(5pi/12) on the previous page, the cos(5pi/12) in the previous page was (root 6 – root 2)/4.0550
Or we want the negative of that this time, I will just switch those around and I will get root 2 – root 6 divided by 4.0565
The key to doing that problem, well first of all, converting those angle to radians, that is a simple conversion factor of pi/180, that part was fairly easy.0583
Once we figured out how to convert those angle to radians, it was a matter of writing them as either sums or differences using addition or subtraction of common values, pi/6, pi/4, pi/3.0593
Things that you already know the sin and cos of by heart.0608
75 degrees 5pi/12, the key there was to figure out that was pi/4 + pi/6 and then know that you remember the common values, the sin and cos(pi/4) and pi/6.0614
So you can work out the sin and cos of 5pi/12, the -15 degrees converted into –pi/12 and then we can write that as pi/6 – pi/4, that would be one way to do it.0630
Or since we already know the sin and cos of 5pi/12, it is a little bit easier to write it as 5pi/12 – pi/2.0646
Then we can use the addition and subtraction formulas which because of the pi/2, essentially reduced it down to knowing the sin and cos of 5pi/12, which we figured out on the previous page.0654
So, that is how you use the addition and subtraction formulas to find the values of sin and cos of other angles when you already know the sin and cos of the common values.0668
That is the end of the lecture on addition and subtraction formulas.0681
We will use these formulas later on to find the double and half angle formulas that is coming next in the trigonometry lectures on www.educator.com.0684
Hi this is Will Murray for educator.com and we're talking about the addition and subtraction formulas for the sine and cosine functions.0000
The basic formulas are all listed here.0009
We have a formula for cos(a-b), cos(a+b), sin(a-b), and sin(a+b).0012
Unfortunately, you really need to memorize these formulas but it is not quite as bad as it looks.0021
In fact, if you can just remember one each for the cosine and the sine, maybe if you can remember cos(a+b) and sin(a+b), we'll learn later on in the lecture that you can work out the other formulas just by making the right substitution into those starter formulas.0026
If you remember what cos(a+b) is then you can substitute in -b in the place of b, and you can work out what the cos(a-b) is.0047
The same for sin(a+b), if you can remember the formula for sin(a+b), you can substitute in -b for b and find out the formula for sin(a-b).0058
You do have to remember a couple of formulas to get started, but after that you can work out the other formulas by some basic substitutions.0070
It's not as bad as it might sound in terms of memorization here.0078
There's a couple of cofunction identities that we're going to be using as we prove and apply the addition and subtraction formulas.0082
It's good to remember that cos(π/2 - x) is the same as sin(x).0092
The similar identity sin(π/2 - x) is equal to cos(x).0098
Those aren't too hard to remember if you kind of keep a graphical picture in your head.0104
Let me show you how those work out.0111
Let me draw an angle x here.0113
Then the cosine and sine, remember the x and y coordinates of that angle.0117
That's the cosine, and that's the sine.0125
And π/2 - x, well π/2 - x, remember of course is a 90-degree angle, so π/2 - x, we just go back x from π/2.0128
There's x and then that right there is π/2 - x.0139
If we write down the cosine and sine of π/2 - x, this is the same angle except we just switch the x and y coordinates.0147
When you go from x to π/2 - x, you're just switching the sine and cosine.0157
That's kind of how I remember that cos(π/2 - x)=sin(x) and sin(π/2 - x)=cos(x).0164
We'll be using those cofunction identities, both to prove the addition and subtraction formulas later on, and also to figure out the sines and cosines of new angles as a quicker in using these addition and subtraction formulas.0172
Let's get some examples here.0189
The first example is to derive the formula for cos(a-b) without using the other addition and subtraction formulas.0191
There's a key phrase here, it says, without using the other formulas.0199
The point of that is that once you figure out that one of these formulas, you can figure out a lot of the other formulas from the first one.0204
If you can figure out one formula, you need one formula to get started because otherwise you kind of get in a circular logic clue.0213
You need one of these formulas to get started and we'll have to go a bit of work to prove that.0221
Figuring out the other formulas from the first one turns out not to be so difficult.0227
What we'll do is we'll work out the formula for cos(a-b).0233
Then in our later example, we'll show how you can work out all the others just from knowing the cos(a-b).0238
This is a bit of a trick, it's probably not something that you would easily think about.0246
It really takes a little bit of ingenuity to prove this.0250
We'll start with a unit circle.0254
There's my unit circle.0269
I'm going to draw an angle a and an angle b.0272
I'm going to draw an angle a over here, so there's a, this big arc here.0274
I'll draw a b a little bit smaller, so there's b.0283
Then (a-b) is the difference between them.0293
This arc between them is going to be (a-b).0296
That's (a-b) in there.0299
Now, I want to write down the coordinates of each of those points.0302
The coordinates there, I'll write them in blue, are cos(a), the x-coordinate, and cos(b), the y-coordinate.0307
That's the coordinates of endpoint of angle a.0318
In red, I'm going to write down the coordinates of the endpoint of angle b, cos(b), sin(b).0324
Now, I'm going to connect those two points up with a straight line.0338
I want to figure out what the distance of that line is, and I'm going to use the Pythagorean formula.0345
Remember, the distance formula that comes from the Pythagorean formula is you look at the differences in the x-coordinates.0350
So, (x2-x1)2+(y2-y1)2, you add those together and you take the square root of the whole thing.0365
That's the distance formula.0379
Here, the x2 and the x1 are the cosines, so my distance is cos(b)-cos(a).0384
Actually, I think I'm going to write that the other way around, this cos(a)-cos(b).0402
It doesn't matter which way I write it because it's going to be squared anyway.0411
Plus [sin(a)-sin(b)]2, then I'll have to take the square root of the whole thing.0416
To get rid of the square root, I'm going to square both sides.0429
I get d2=(cos(a)-cos(b))2+(sin(a)-sin(b))2.0435
That's one way of calculating that distance.0452
Now, I'm going to do something a little different.0455
I'm going to take this line segment d and I'm going to move it over, move it around the circle so that it starts down here at the point (1,0).0458
There's that line segment again.0475
Remember, the line segment was cutting off an arc of the circle exactly equal to (a-b), exactly equal to an angle of the size (a-b), which means that that point right there has coordinates (cos(a-b),sin(a-b)).0481
That point has coordinates (cos(a-b),sin(a-b)).0513
Now, I'm going to apply the distance formula, again, to the new line segment in the new place.0519
That says, again, the change in the x coordinates plus the change in the y coordinates, square each one of those and add them up and take the square root.0525
So, d is equal to change in x coordinates, that's cos(a-b).0535
Now, the old x-coordinate is just 1 because I'm looking at the point (1,0).0543
That quantity squared plus the change in y coordinates, sin(a-b) minus, the old y-coordinate is 0, squared.0547
Then I take the square root of the whole thing.0562
I'm going to square both sides, d2=(cos(a)-1)2+(sin2(a-b)).0566
What I'm going to do is look at these two different expressions here for d2.0590
Well, they're both describing the same d2, they must be equal to each other.0597
That was kind of the geometric insight to figure out to get me an algebraic equation setting a bunch of things equal to each other.0608
From here on, it's just algebra, so we're going to set these two equations equal to each other.0616
The first one is (cos(a)-cos(b))2+(sin(a)-sin(b))2 is equal to the second one, (cos(a-b)-1)2+(sin2(a-b)).0622
Now, I'm just going to manipulate this expression expanded out, cancel few things and it should give us the identity that we want.0652
Remember, the square formula (a-b)2=a2-2ab+b2.0659
We're going to be using that a lot because we have a lot of squares of differences.0671
On the first term we have cos2(a)-2cos(a)cos(b)+cos2(b)+sin2(a)-2sin(a)sin(b)+sin2(b)=cos2(a-b)-2×1×cos(a-b)+sin2(a-b).0679
Now, there's a lot of nice ways to invoke the Pythagorean identity here.0727
If you look at this term, and this term, cos2(a) and sin2(a), that gives me 1-2cos(a)cos(b).0735
Now I have a cos2(b) and a sin2(b), so that's another 1-2sin(a)sin(b), is equal to, now look, cos2(a-b) and sin2(a-b), that's another 1.0749
It looks like I forgot one term on the line above when I was squaring out cos(a-b)-12, I got cos2(a-b)-2cos(a-b), then there should be +12, there's another 1 in there.0772
There's another 1 in there, -2cos(a-b).0793
That's it because we already took care of the sin2(a-b) that got absorbed with the cos(a-b).0800
There's a lot of terms that will cancel now.0807
The 1s will cancel, 1, 1, 1 and 1, those will cancel.0809
We're left with -2, I'll factor that out, cos(a)×cos(b)+sin(a), because I factored out the -2, sin(b), is equal to -2cos(a-b).0814
Now, if we cancel the -2s, look what we have.0838
We have exactly cos(a)×cos(b)+sin(a)×sin(b)=cos(a-b).0840
That's the formula for cos(a-b).0860
That was really quite tricky.0864
The key element to that is that we did not use the other addition and subtraction formulas.0867
We really derived this from scratch, which means that we can use this as our starting point.0873
Later on, we'll derive the other addition and subtraction formulas but we'll be able to use this one to get started.0878
The others will be a lot easier.0884
This one was trickier because we really had to later on geometric ideas from scratch.0887
What we did was we graphed this angle a and angle b.0892
We connected them up with this line segment d, and we found the length of that line segment using the Pythagorean distance formula.0897
Then we did this very clever idea of translating and moving that line segment d over, so that it had a base of one endpoint at (1,0).0905
We found another expression for the length of that line segment or that distance, also using the Pythagorean distance formula but starting and ending at different places.0916
We get these two expressions for the length of that line segment d, and then we set them equal to each other in this line.0929
Then we got this sort of big algebraic and trigonometric mess, but there was no more real geometric insight after that.0937
It was just a matter of sort of expanding out algebraically using the Pythagorean identity to cancel some things that kind of collapse together, sin2+cos2=1.0944
It all reduced down into the formula for cos(a-b).0957
Now, let's try applying the addition and subtraction formulas to actually find the cosines and sines of some values that we wouldn't have been able to do without these formulas.0964
In particular, we're going to find the cosine and sine of π/12 radians and 105 degrees.0975
Let's start out with cosine of π/12 radians.0982
Cos(π/12), that's not one of the common values.0987
I don't have that memorized, instead I'm going to write π/12 as a combination of angles that I do have the common values memorized for.0992
Here's the trick, remember π/12=π/4 - π/6, that's because π/4 is 3π/12 and π6 is 2π/12.1003
You subtract them, and you get π/12.1020
The reason I do it like that is that I know the sines and cosines for π/4 and π/6.1022
I can use my subtraction formulas to figure out what the cosine and sine of π/12 are in terms of π/4 and π/6.1030
I'm going to use my subtraction formula cos(a-b)=cos(a)×cos(b)+sin(a)×sin(b).1042
Here, the (a-b) is π/12, so a and b are π/4 and π/6.1060
This is cos(π/4-π/6), which is cos(π/4)×cos(π/6)+sin(π/4)×sin(π/6).1066
Now, π/4, π/6, those are common angles that I have those sines and cosines absolutely memorized so I can just come up with those very quickly.1095
The cos(π/4) is square root of 2 over 2.1105
The cos(π/6) is square root of 3 over 2.1109
The sin(π/4) is root 2 over 2.1113
The sin(π/6) is 1/2.1115
Those are values that I have memorized, you should have them memorized too.1117
Now, we simply combine these, root 2 times root 3 is root 6.1123
I see I'm going to have a common denominator of 4 here, and root 2 times 1 is just root 2.1130
That gives me the cos(π/12) as root 2 plus root 6 over 4.1139
I'm going to work out sin(π/12) very much the same way, it's the sine of (π/4) - (π/6).1145
I remember my formula for the sin(a-b), it's sin(a)×cos(b)-cos(a)×sin(b).1160
I'll just plug that in as sin(π/4), cos(b) is π/6, minus cos(π/4)×sin(π/6).1177
So, sin(π/4) is root 2 over 2, cos(π/6) is root 3 over 2, minus cos(π/4) is root 2 over 2, and sin(π/6) is 1/2.1196
Again, I have a common denominator of 4, and I get root 2 times root 3 is root 6, minus root 2.1212
What we did there was we just recognized that (π/12) is (π/4)-(π/6), and those are both common values that I know the sine and cosine of.1227
I can invoke my cosine and sine formulas to figure out what the cosine and sine are of (π/12).1238
Now, let's do the same thing with a 105 degrees.1246
We'll do everything in terms of degrees now.1250
I know that 105, well, to break that up to some common values that I recognize, that's 45+60.1254
I'm going to be using my addition formulas now.1264
I'll write those down to review them.1267
cos(a+b)=cos(a)×cos(b)-sin(a)×sin(b), and when I'm at it, I'll remember that the sin(a+b)=sin(a)×cos(b)+cos(a)×sin(b).1269
The cos(105), that's the same as cos(45+60).1300
Using the formulas with a as 45 and b as 60, I get cos(45)×cos(60)-sin(45)×sin(60).1310
Again, 45 and 60 are both common values, I've got the sines and cosines absolutely committed to memory, and hopefully you do too by the time you've gotten this far in trigonometry.1328
Cos(45) is square root of 2 over 2, cos(60) is 1/2, sin(45) is square root of 2 over 2, and the sin(60) is root 3 over 2.1338
I'll put those together.1353
Common denominator is 4, and I get square root of 2 minus the square root of 6, as my cos(105).1355
Sin(105) works very much the same way.1366
We'll write that as sin(45+60), which is sin(45)×cos(60)+cos(45)×sin(60).1371
Now, I'll just plug in the common values that I have committed to memory, root 2 over 2, cos(60) is 1/2, plus cos(45) is root 2 over 2, and sin(60) is root 3 over 2.1391
Common denominator there is 4.1408
This is root 2 over 2 plus root 6 over 4.1413
That was a matter of recognizing that 105 degrees.1422
It's not a common value itself but we can get it from the common values as 45+60.1426
Those both are common values, so I know the sines and cosines, so I can figure out what the sine and cos of 105 is, by using my addition and subtraction formulas.1434
I'll mention one more thing there which is that we could write 105.1443
If we convert that into radians, that's 7π/12 radians.1450
Remember, the way to convert back and forth is you just multiply by π/180.1455
Then, 7π/12, well that's the same as 6π/12, otherwise known as π/2 + 1π/12.1462
We figured out what the sine and cosine of π/12 were on the previous page.1473
Once you know the sine and cosine of π/12, you could work out the sine and cosine of 7π/12 by doing an addition formula on π/2 + π/12.1482
This is really an alternate way we could have solved this problem.1494
Given that we had already figured out the sine and cosine of π/12.1504
Let's try another example there.1509
We're going to use the addition and subtraction formulas to prove a trigonometric identity sin(5x)+sin(x) over cos(5x)+cos(x) is equal to tan(3x).1512
It really may not be obvious how to start with something like this.1525
The trick here is to write 5x, to realize 5x is 3x+2x, and x itself is 3x-2x.1530
If we start with a=3x and b=2x, then 5x=a+b, and x itself is a-b.1544
That's what the connection between this identity and the addition and subtraction formulas is.1561
We're going to use the addition and subtraction formulas to prove this identity.1566
Let me write them down now and show how we can combine them in clever ways.1571
I'm going to write down the formula for sin(a-b).1574
Remember, that's sin(a)×cos(b)-cos(a)×sin(b).1580
Right underneath it, I'll write the formula for sin(a+b) which is the same formula sin(a)×cos(b)+cos(a)×sin(b).1590
Now, I'm going to do something clever here.1608
I'm going to add these two equations together.1613
The point of that is to make the cos(a)×sin(b) cancel.1617
If we add these equations together, on the left-hand side we get sin(a-b)+sin(a+b).1623
Remember, you're thinking in the back of your head, a is going to be 3x and b is going to be 2x.1638
On the left side, we really got now sin(x)+sin(5x), which is looking good because that's what we have in the identity.1644
On the right side, we get 2sin(a)×cos(b), and then the cos(a)×sin(b), they cancel.1650
That was the cleverness of adding these equations together.1667
We get 2sin(a)×cos(b).1669
If I plug in a=3x and b=2x, I will get sin(a-b) is just sin(x), plus sin(a+b) which is 5x.1674
On the right-hand side, I'll get 2sin(a) is 3x, cos(b) is x.1692
That seems kind of hopeful because that's something I can plug in to the left-hand side of my identity and see what happens with it.1703
Before we do that though, I'm going to try and work out a similar kind of formula with the addition and subtraction formulas for cosine.1710
Let me write those down.1718
Cos(a-b) is equal to cos(a)×cos(b) plus, cosine is the one that switches the positive and the negative, plus sin(a)×sin(b).1720
I wanted to figure out cos(a+b).1743
It's just the same thing changing the positives and negatives, so cos(a)×cos(b)-sin(a)×sin(b).1749
I'm going to do the same thing here, I'm going to add them together in order to make them cancel nicely.1760
On the left-hand side, I get cos(a-b)+cos(a+b)=2cos(a)×cos(b).1767
That's it, because the sin(a) and sin(b) cancel with each other.1785
I'm going to plug in a=3x and b=2x, so I get cos(x) plus cos(a+b) is 5x, is equal to 2 cosine, a is 3x, and b is 2x.1791
Let's keep this in mind, I've got an expression for sin(x)+sin(5x), and I've got an expression for cos(x)+cos(5x).1810
I'm going to combine those and see if I can prove the identity.1823
I'll start with the left-hand side of the identity.1832
I'll see if I can transform it into the right-hand side.1836
The left-hand side is sin(5x)+sin(x) over cos(5x)+cos(x).1841
Now, by what we did on the previous page, I have an expression for sin(5x)+sin(x), that's sin(3x)×cos(2x).1860
That's by the work we did on the previous page.1881
Also on the previous page, cos(5x)+cos(x)=2cos(3x)×cos(2x).1890
That was also what we did on the previous page.1901
But now look at this, the cos(2x) is cancelled, and what we get is 2sin(3x) over 2cos(3x).1906
The 2s cancel as well and we get just tan(3x), which is equal to the right-hand side.1920
We finished proving it.1929
The trick there and it really was quite a bit of cleverness that might not be obvious the first time you try one of these problems, but you'll practice more and more and you'll get the hang of it, is to look at this 5x and x, and figure out how to use those in the context in the addition and subtraction formulas.1933
The trick is to let a=3x and b=2x, and the point of that is that (a-b), will then be x, and a+b will be 5x.1951
That gives us the expressions that we had in the identity here.1967
Once we see (a-b) and (a+b), it's worthwhile writing down the sine and the cosine each one of (a-b) and (a+b), and kind of looking at those formulas and kind of mixing and matching them, and finding something that gives us something that shows up in the identity.1974
Once we get that, we start with the left-hand side of the identity, we work it down until we get to the right-hand side of the identity.1997
We'll try some more examples of that later2004

Professor Murray
Addition and Subtraction Formulas
Slide Duration:Table of Contents
10m 3s
- Intro0:00
- Title of the Course0:06
- Different Names for the Course0:07
- Precalculus0:12
- Math Analysis0:14
- Trigonometry0:16
- Algebra III0:20
- Geometry II0:24
- College Algebra0:30
- Same Concepts0:36
- How do the Lessons Work?0:54
- Introducing Concepts0:56
- Apply Concepts1:04
- Go through Examples1:25
- Who is this Course For?1:38
- Those Who Need eExtra Help with Class Work1:52
- Those Working on Material but not in Formal Class at School1:54
- Those Who Want a Refresher2:00
- Try to Watch the Whole Lesson2:20
- Understanding is So Important3:56
- What to Watch First5:26
- Lesson #2: Sets, Elements, and Numbers5:30
- Lesson #7: Idea of a Function5:33
- Lesson #6: Word Problems6:04
- What to Watch First, cont.6:46
- Lesson #2: Sets, Elements and Numbers6:56
- Lesson #3: Variables, Equations, and Algebra6:58
- Lesson #4: Coordinate Systems7:00
- Lesson #5: Midpoint, Distance, the Pythagorean Theorem and Slope7:02
- Lesson #6: Word Problems7:10
- Lesson #7: Idea of a Function7:12
- Lesson #8: Graphs7:14
- Graphing Calculator Appendix7:40
- What to Watch Last8:46
- Let's get Started!9:48
45m 11s
- Intro0:00
- Introduction0:05
- Sets and Elements1:19
- Set1:20
- Element1:23
- Name a Set2:20
- Order The Elements Appear In Has No Effect on the Set2:55
- Describing/ Defining Sets3:28
- Directly Say All the Elements3:36
- Clearly Describing All the Members of the Set3:55
- Describing the Quality (or Qualities) Each member Of the Set Has In Common4:32
- Symbols: 'Element of' and 'Subset of'6:01
- Symbol is ∈6:03
- Subset Symbol is ⊂6:35
- Empty Set8:07
- Symbol is ∅8:20
- Since It's Empty, It is a Subset of All Sets8:44
- Union and Intersection9:54
- Union Symbol is ∪10:08
- Intersection Symbol is ∩10:18
- Sets Can Be Weird Stuff12:26
- Can Have Elements in a Set12:50
- We Can Have Infinite Sets13:09
- Example13:22
- Consider a Set Where We Take a Word and Then Repeat It An Ever Increasing Number of Times14:08
- This Set Has Infinitely Many Distinct Elements14:40
- Numbers as Sets16:03
- Natural Numbers ℕ16:16
- Including 0 and the Negatives ℤ18:13
- Rational Numbers ℚ19:27
- Can Express Rational Numbers with Decimal Expansions22:05
- Irrational Numbers23:37
- Real Numbers ℝ: Put the Rational and Irrational Numbers Together25:15
- Interval Notation and the Real Numbers26:45
- Include the End Numbers27:06
- Exclude the End Numbers27:33
- Example28:28
- Interval Notation: Infinity29:09
- Use -∞ or ∞ to Show an Interval Going on Forever in One Direction or the Other29:14
- Always Use Parentheses29:50
- Examples30:27
- Example 131:23
- Example 235:26
- Example 338:02
- Example 442:21
35m 31s
- Intro0:00
- What is a Variable?0:05
- A Variable is a Placeholder for a Number0:11
- Affects the Output of a Function or a Dependent Variable0:24
- Naming Variables1:51
- Useful to Use Symbols2:21
- What is a Constant?4:14
- A Constant is a Fixed, Unchanging Number4:28
- We Might Refer to a Symbol Representing a Number as a Constant4:51
- What is a Coefficient?5:33
- A Coefficient is a Multiplicative Factor on a Variable5:37
- Not All Coefficients are Constants5:51
- Expressions and Equations6:42
- An Expression is a String of Mathematical Symbols That Make Sense Used Together7:05
- An Equation is a Statement That Two Expression Have the Same Value8:20
- The Idea of Algebra8:51
- Equality8:59
- If Two Things Are the Same *Equal), Then We Can Do the Exact Same Operation to Both and the Results Will Be the Same9:41
- Always Do The Exact Same Thing to Both Sides12:22
- Solving Equations13:23
- When You Are Asked to Solve an Equation, You Are Being Asked to Solve for Something13:33
- Look For What Values Makes the Equation True13:38
- Isolate the Variable by Doing Algebra14:37
- Order of Operations16:02
- Why Certain Operations are Grouped17:01
- When You Don't Have to Worry About Order17:39
- Distributive Property18:15
- It Allows Multiplication to Act Over Addition in Parentheses18:23
- We Can Use the Distributive Property in Reverse to Combine Like Terms19:05
- Substitution20:03
- Use Information From One Equation in Another Equation20:07
- Put Your Substitution in Parentheses20:44
- Example 123:17
- Example 225:49
- Example 328:11
- Example 430:02
35m 2s
- Intro0:00
- Inherent Order in ℝ0:05
- Real Numbers Come with an Inherent Order0:11
- Positive Numbers0:21
- Negative Numbers0:58
- 'Less Than' and 'Greater Than'2:04
- Tip To Help You Remember the Signs2:56
- Inequality4:06
- Less Than or Equal and Greater Than or Equal4:51
- One Dimension: The Number Line5:36
- Graphically Represent ℝ on a Number Line5:43
- Note on Infinities5:57
- With the Number Line, We Can Directly See the Order We Put on ℝ6:35
- Ordered Pairs7:22
- Example7:34
- Allows Us to Talk About Two Numbers at the Same Time9:41
- Ordered Pairs of Real Numbers Cannot be Put Into an Order Like we Did with ℝ10:41
- Two Dimensions: The Plane13:13
- We Can Represent Ordered Pairs with the Plane13:24
- Intersection is known as the Origin14:31
- Plotting the Point14:32
- Plane = Coordinate Plane = Cartesian Plane = ℝ²17:46
- The Plane and Quadrants18:50
- Quadrant I19:04
- Quadrant II19:21
- Quadrant III20:04
- Quadrant IV20:20
- Three Dimensions: Space21:02
- Create Ordered Triplets21:09
- Visually Represent This21:19
- Three-Dimension = Space = ℝ³21:47
- Higher Dimensions22:24
- If We Have n Dimensions, We Call It n-Dimensional Space or ℝ to the nth Power22:31
- We Can Represent Places In This n-Dimensional Space As Ordered Groupings of n Numbers22:41
- Hard to Visualize Higher Dimensional Spaces23:18
- Example 125:07
- Example 226:10
- Example 328:58
- Example 431:05
48m 43s
- Intro0:00
- Introduction0:07
- Midpoint: One Dimension2:09
- Example of Something More Complex2:31
- Use the Idea of a Middle3:28
- Find the Midpoint of Arbitrary Values a and b4:17
- How They're Equivalent5:05
- Official Midpoint Formula5:46
- Midpoint: Two Dimensions6:19
- The Midpoint Must Occur at the Horizontal Middle and the Vertical Middle6:38
- Arbitrary Pair of Points Example7:25
- Distance: One Dimension9:26
- Absolute Value10:54
- Idea of Forcing Positive11:06
- Distance: One Dimension, Formula11:47
- Distance Between Arbitrary a and b11:48
- Absolute Value Helps When the Distance is Negative12:41
- Distance Formula12:58
- The Pythagorean Theorem13:24
- a²+b²=c²13:50
- Distance: Two Dimensions14:59
- Break Into Horizontal and Vertical Parts and then Use the Pythagorean Theorem15:16
- Distance Between Arbitrary Points (x₁,y₁) and (x₂,y₂)16:21
- Slope19:30
- Slope is the Rate of Change19:41
- m = rise over run21:27
- Slope Between Arbitrary Points (x₁,y₁) and (x₂,y₂)22:31
- Interpreting Slope24:12
- Positive Slope and Negative Slope25:40
- m=1, m=0, m=-126:48
- Example 128:25
- Example 231:42
- Example 336:40
- Example 442:48
56m 31s
- Intro0:00
- Introduction0:05
- What is a Word Problem?0:45
- Describes Any Problem That Primarily Gets Its Ideas Across With Words Instead of Math Symbols0:48
- Requires Us to Think1:32
- Why Are They So Hard?2:11
- Reason 1: No Simple Formula to Solve Them2:16
- Reason 2: Harder to Teach Word Problems2:47
- You Can Learn How to Do Them!3:51
- Grades7:57
- 'But I'm Never Going to Use This In Real Life'9:46
- Solving Word Problems12:58
- First: Understand the Problem13:37
- Second: What Are You Looking For?14:33
- Third: Set Up Relationships16:21
- Fourth: Solve It!17:48
- Summary of Method19:04
- Examples on Things Other Than Math20:21
- Math-Specific Method: What You Need Now25:30
- Understand What the Problem is Talking About25:37
- Set Up and Name Any Variables You Need to Know25:56
- Set Up Equations Connecting Those Variables to the Information in the Problem Statement26:02
- Use the Equations to Solve for an Answer26:14
- Tip26:58
- Draw Pictures27:22
- Breaking Into Pieces28:28
- Try Out Hypothetical Numbers29:52
- Student Logic31:27
- Jump In!32:40
- Example 134:03
- Example 239:15
- Example 344:22
- Example 450:24
39m 54s
- Intro0:00
- Introduction0:04
- What is a Function?1:06
- A Visual Example and Non-Example1:30
- Function Notation3:47
- f(x)4:05
- Express What Sets the Function Acts On5:45
- Metaphors for a Function6:17
- Transformation6:28
- Map7:17
- Machine8:56
- Same Input Always Gives Same Output10:01
- If We Put the Same Input Into a Function, It Will Always Produce the Same Output10:11
- Example of Something That is Not a Function11:10
- A Non-Numerical Example12:10
- The Functions We Will Use15:05
- Unless Told Otherwise, We Will Assume Every Function Takes in Real Numbers and Outputs Real Numbers15:11
- Usually Told the Rule of a Given Function15:27
- How To Use a Function16:18
- Apply the Rule to Whatever Our Input Value Is16:28
- Make Sure to Wrap Your Substitutions in Parentheses17:09
- Functions and Tables17:36
- Table of Values, Sometimes Called a T-Table17:46
- Example17:56
- Domain: What Goes In18:55
- The Domain is the Set of all Inputs That the Function Can Accept18:56
- Example19:40
- Range: What Comes Out21:27
- The Range is the Set of All Possible Outputs a Function Can Assign21:34
- Example21:49
- Another Example Would Be Our Initial Function From Earlier in This Lesson22:29
- Example 123:45
- Example 225:22
- Example 327:27
- Example 429:23
- Example 533:33
58m 26s
- Intro0:00
- Introduction0:04
- How to Interpret Graphs1:17
- Input / Independent Variable1:47
- Output / Dependent Variable2:00
- Graph as Input ⇒ Output2:23
- One Way to Think of a Graph: See What Happened to Various Inputs2:25
- Example2:47
- Graph as Location of Solution4:20
- A Way to See Solutions4:36
- Example5:20
- Which Way Should We Interpret?7:13
- Easiest to Think In Terms of How Inputs Are Mapped to Outputs7:20
- Sometimes It's Easier to Think In Terms of Solutions8:39
- Pay Attention to Axes9:50
- Axes Tell Where the Graph Is and What Scale It Has10:09
- Often, The Axes Will Be Square10:14
- Example12:06
- Arrows or No Arrows?16:07
- Will Not Use Arrows at the End of Our Graphs17:13
- Graph Stops Because It Hits the Edge of the Graphing Axes, Not Because the Function Stops17:18
- How to Graph19:47
- Plot Points20:07
- Connect with Curves21:09
- If You Connect with Straight Lines21:44
- Graphs of Functions are Smooth22:21
- More Points ⇒ More Accurate23:38
- Vertical Line Test27:44
- If a Vertical Line Could Intersect More Than One Point On a Graph, It Can Not Be the Graph of a Function28:41
- Every Point on a Graph Tells Us Where the x-Value Below is Mapped30:07
- Domain in Graphs31:37
- The Domain is the Set of All Inputs That a Function Can Accept31:44
- Be Aware That Our Function Probably Continues Past the Edge of Our 'Viewing Window'33:19
- Range in Graphs33:53
- Graphing Calculators: Check the Appendix!36:55
- Example 138:37
- Example 245:19
- Example 350:41
- Example 453:28
- Example 555:50
48m 49s
- Intro0:00
- Introduction0:05
- Increasing Decreasing Constant0:43
- Looking at a Specific Graph1:15
- Increasing Interval2:39
- Constant Function4:15
- Decreasing Interval5:10
- Find Intervals by Looking at the Graph5:32
- Intervals Show x-values; Write in Parentheses6:39
- Maximum and Minimums8:48
- Relative (Local) Max/Min10:20
- Formal Definition of Relative Maximum12:44
- Formal Definition of Relative Minimum13:05
- Max/Min, More Terms14:18
- Definition of Extrema15:01
- Average Rate of Change16:11
- Drawing a Line for the Average Rate16:48
- Using the Slope of the Secant Line17:36
- Slope in Function Notation18:45
- Zeros/Roots/x-intercepts19:45
- What Zeros in a Function Mean20:25
- Even Functions22:30
- Odd Functions24:36
- Even/Odd Functions and Graphs26:28
- Example of an Even Function27:12
- Example of an Odd Function28:03
- Example 129:35
- Example 233:07
- Example 340:32
- Example 442:34
29m 20s
- Intro0:00
- Introduction0:04
- Don't Forget that Axes Matter!1:44
- The Constant Function2:40
- The Identity Function3:44
- The Square Function4:40
- The Cube Function5:44
- The Square Root Function6:51
- The Reciprocal Function8:11
- The Absolute Value Function10:19
- The Trigonometric Functions11:56
- f(x)=sin(x)12:12
- f(x)=cos(x)12:24
- Alternate Axes12:40
- The Exponential and Logarithmic Functions13:35
- Exponential Functions13:44
- Logarithmic Functions14:24
- Alternating Axes15:17
- Transformations and Compositions16:08
- Example 117:52
- Example 218:33
- Example 320:24
- Example 426:07
48m 35s
- Intro0:00
- Introduction0:04
- Vertical Shift1:12
- Graphical Example1:21
- A Further Explanation2:16
- Vertical Stretch/Shrink3:34
- Graph Shrinks3:46
- Graph Stretches3:51
- A Further Explanation5:07
- Horizontal Shift6:49
- Moving the Graph to the Right7:28
- Moving the Graph to the Left8:12
- A Further Explanation8:19
- Understanding Movement on the x-axis8:38
- Horizontal Stretch/Shrink12:59
- Shrinking the Graph13:40
- Stretching the Graph13:48
- A Further Explanation13:55
- Understanding Stretches from the x-axis14:12
- Vertical Flip (aka Mirror)16:55
- Example Graph17:07
- Multiplying the Vertical Component by -117:18
- Horizontal Flip (aka Mirror)18:43
- Example Graph19:01
- Multiplying the Horizontal Component by -119:54
- Summary of Transformations22:11
- Stacking Transformations24:46
- Order Matters25:20
- Transformation Example25:52
- Example 129:21
- Example 234:44
- Example 338:10
- Example 443:46
33m 24s
- Intro0:00
- Introduction0:04
- Arithmetic Combinations0:40
- Basic Operations1:20
- Definition of the Four Arithmetic Combinations1:40
- Composite Functions2:53
- The Function as a Machine3:32
- Function Compositions as Multiple Machines3:59
- Notation for Composite Functions4:46
- Two Formats6:02
- Another Visual Interpretation7:17
- How to Use Composite Functions8:21
- Example of on Function acting on Another9:17
- Example 111:03
- Example 215:27
- Example 321:11
- Example 427:06
51m 42s
- Intro0:00
- Introduction0:04
- Analogies to a Piecewise Function1:16
- Different Potatoes1:41
- Factory Production2:27
- Notations for Piecewise Functions3:39
- Notation Examples from Analogies6:11
- Example of a Piecewise (with Table)7:24
- Example of a Non-Numerical Piecewise11:35
- Graphing Piecewise Functions14:15
- Graphing Piecewise Functions, Example16:26
- Continuous Functions16:57
- Statements of Continuity19:30
- Example of Continuous and Non-Continuous Graphs20:05
- Interesting Functions: the Step Function22:00
- Notation for the Step Function22:40
- How the Step Function Works22:56
- Graph of the Step Function25:30
- Example 126:22
- Example 228:49
- Example 336:50
- Example 446:11
49m 37s
- Intro0:00
- Introduction0:04
- Analogy by picture1:10
- How to Denote the inverse1:40
- What Comes out of the Inverse1:52
- Requirement for Reversing2:02
- The Basketball Factory2:12
- The Importance of Information2:45
- One-to-One4:04
- Requirement for Reversibility4:21
- When a Function has an Inverse4:43
- One-to-One5:13
- Not One-to-One5:50
- Not a Function6:19
- Horizontal Line Test7:01
- How to the test Works7:12
- One-to-One8:12
- Not One-to-One8:45
- Definition: Inverse Function9:12
- Formal Definition9:21
- Caution to Students10:02
- Domain and Range11:12
- Finding the Range of the Function Inverse11:56
- Finding the Domain of the Function Inverse12:11
- Inverse of an Inverse13:09
- Its just x!13:26
- Proof14:03
- Graphical Interpretation17:07
- Horizontal Line Test17:20
- Graph of the Inverse18:04
- Swapping Inputs and Outputs to Draw Inverses19:02
- How to Find the Inverse21:03
- What We Are Looking For21:21
- Reversing the Function21:38
- A Method to Find Inverses22:33
- Check Function is One-to-One23:04
- Swap f(x) for y23:25
- Interchange x and y23:41
- Solve for y24:12
- Replace y with the inverse24:40
- Some Comments25:01
- Keeping Step 2 and 3 Straight25:44
- Switching to Inverse26:12
- Checking Inverses28:52
- How to Check an Inverse29:06
- Quick Example of How to Check29:56
- Example 131:48
- Example 234:56
- Example 339:29
- Example 446:19
28m 49s
- Intro0:00
- Introduction0:06
- Direct Variation1:14
- Same Direction1:21
- Common Example: Groceries1:56
- Different Ways to Say that Two Things Vary Directly2:28
- Basic Equation for Direct Variation2:55
- Inverse Variation3:40
- Opposite Direction3:50
- Common Example: Gravity4:53
- Different Ways to Say that Two Things Vary Indirectly5:48
- Basic Equation for Indirect Variation6:33
- Joint Variation7:27
- Equation for Joint Variation7:53
- Explanation of the Constant8:48
- Combined Variation9:35
- Gas Law as a Combination9:44
- Single Constant10:33
- Example 110:49
- Example 213:34
- Example 315:39
- Example 419:48
38m 41s
- Intro0:00
- Introduction0:04
- Definition of a Polynomial1:04
- Starting Integer2:06
- Structure of a Polynomial2:49
- The a Constants3:34
- Polynomial Function5:13
- Polynomial Equation5:23
- Polynomials with Different Variables5:36
- Degree6:23
- Informal Definition6:31
- Find the Largest Exponent Variable6:44
- Quick Examples7:36
- Special Names for Polynomials8:59
- Based on the Degree9:23
- Based on the Number of Terms10:12
- Distributive Property (aka 'FOIL')11:37
- Basic Distributive Property12:21
- Distributing Two Binomials12:55
- Longer Parentheses15:12
- Reverse: Factoring17:26
- Long-Term Behavior of Polynomials17:48
- Examples18:13
- Controlling Term--Term with the Largest Exponent19:33
- Positive and Negative Coefficients on the Controlling Term20:21
- Leading Coefficient Test22:07
- Even Degree, Positive Coefficient22:13
- Even Degree, Negative Coefficient22:39
- Odd Degree, Positive Coefficient23:09
- Odd Degree, Negative Coefficient23:27
- Example 125:11
- Example 227:16
- Example 331:16
- Example 434:41
41m 7s
- Intro0:00
- Introduction0:05
- Roots in Graphs1:17
- The x-intercepts1:33
- How to Remember What 'Roots' Are1:50
- Naïve Attempts2:31
- Isolating Variables2:45
- Failures of Isolating Variables3:30
- Missing Solutions4:59
- Factoring: How to Find Roots6:28
- How Factoring Works6:36
- Why Factoring Works7:20
- Steps to Finding Polynomial Roots9:21
- Factoring: How to Find Roots CAUTION10:08
- Factoring is Not Easy11:32
- Factoring Quadratics13:08
- Quadratic Trinomials13:21
- Form of Factored Binomials13:38
- Factoring Examples14:40
- Factoring Quadratics, Check Your Work16:58
- Factoring Higher Degree Polynomials18:19
- Factoring a Cubic18:32
- Factoring a Quadratic19:04
- Factoring: Roots Imply Factors19:54
- Where a Root is, A Factor Is20:01
- How to Use Known Roots to Make Factoring Easier20:35
- Not all Polynomials Can be Factored22:30
- Irreducible Polynomials23:27
- Complex Numbers Help23:55
- Max Number of Roots/Factors24:57
- Limit to Number of Roots Equal to the Degree25:18
- Why there is a Limit25:25
- Max Number of Peaks/Valleys26:39
- Shape Information from Degree26:46
- Example Graph26:54
- Max, But Not Required28:00
- Example 128:37
- Example 231:21
- Example 336:12
- Example 438:40
39m 43s
- Intro0:00
- Introduction0:05
- Square Roots and Equations0:51
- Taking the Square Root to Find the Value of x0:55
- Getting the Positive and Negative Answers1:05
- Completing the Square: Motivation2:04
- Polynomials that are Easy to Solve2:20
- Making Complex Polynomials Easy to Solve3:03
- Steps to Completing the Square4:30
- Completing the Square: Method7:22
- Move C over7:35
- Divide by A7:44
- Find r7:59
- Add to Both Sides to Complete the Square8:49
- Solving Quadratics with Ease9:56
- The Quadratic Formula11:38
- Derivation11:43
- Final Form12:23
- Follow Format to Use Formula13:38
- How Many Roots?14:53
- The Discriminant15:47
- What the Discriminant Tells Us: How Many Roots15:58
- How the Discriminant Works16:30
- Example 1: Complete the Square18:24
- Example 2: Solve the Quadratic22:00
- Example 3: Solve for Zeroes25:28
- Example 4: Using the Quadratic Formula30:52
45m 34s
- Intro0:00
- Introduction0:05
- Parabolas0:35
- Examples of Different Parabolas1:06
- Axis of Symmetry and Vertex1:28
- Drawing an Axis of Symmetry1:51
- Placing the Vertex2:28
- Looking at the Axis of Symmetry and Vertex for other Parabolas3:09
- Transformations4:18
- Reviewing Transformation Rules6:28
- Note the Different Horizontal Shift Form7:45
- An Alternate Form to Quadratics8:54
- The Constants: k, h, a9:05
- Transformations Formed10:01
- Analyzing Different Parabolas10:10
- Switching Forms by Completing the Square11:43
- Vertex of a Parabola16:30
- Vertex at (h, k)16:47
- Vertex in Terms of a, b, and c Coefficients17:28
- Minimum/Maximum at Vertex18:19
- When a is Positive18:25
- When a is Negative18:52
- Axis of Symmetry19:54
- Incredibly Minor Note on Grammar20:52
- Example 121:48
- Example 226:35
- Example 328:55
- Example 431:40
46m 8s
- Intro0:00
- Introduction0:05
- Reminder: Roots Imply Factors1:32
- The Intermediate Value Theorem3:41
- The Basis: U between a and b4:11
- U is on the Function4:52
- Intermediate Value Theorem, Proof Sketch5:51
- If Not True, the Graph Would Have to Jump5:58
- But Graph is Defined as Continuous6:43
- Finding Roots with the Intermediate Value Theorem7:01
- Picking a and b to be of Different Signs7:10
- Must Be at Least One Root7:46
- Dividing a Polynomial8:16
- Using Roots and Division to Factor8:38
- Long Division Refresher9:08
- The Division Algorithm12:18
- How It Works to Divide Polynomials12:37
- The Parts of the Equation13:24
- Rewriting the Equation14:47
- Polynomial Long Division16:20
- Polynomial Long Division In Action16:29
- One Step at a Time20:51
- Synthetic Division22:46
- Setup23:11
- Synthetic Division, Example24:44
- Which Method Should We Use26:39
- Advantages of Synthetic Method26:49
- Advantages of Long Division27:13
- Example 129:24
- Example 231:27
- Example 336:22
- Example 440:55
45m 36s
- Intro0:00
- Introduction0:04
- A Wacky Idea1:02
- The Definition of the Imaginary Number1:22
- How it Helps Solve Equations2:20
- Square Roots and Imaginary Numbers3:15
- Complex Numbers5:00
- Real Part and Imaginary Part5:20
- When Two Complex Numbers are Equal6:10
- Addition and Subtraction6:40
- Deal with Real and Imaginary Parts Separately7:36
- Two Quick Examples7:54
- Multiplication9:07
- FOIL Expansion9:14
- Note What Happens to the Square of the Imaginary Number9:41
- Two Quick Examples10:22
- Division11:27
- Complex Conjugates13:37
- Getting Rid of i14:08
- How to Denote the Conjugate14:48
- Division through Complex Conjugates16:11
- Multiply by the Conjugate of the Denominator16:28
- Example17:46
- Factoring So-Called 'Irreducible' Quadratics19:24
- Revisiting the Quadratic Formula20:12
- Conjugate Pairs20:37
- But Are the Complex Numbers 'Real'?21:27
- What Makes a Number Legitimate25:38
- Where Complex Numbers are Used27:20
- Still, We Won't See Much of C29:05
- Example 130:30
- Example 233:15
- Example 338:12
- Example 442:07
19m 9s
- Intro0:00
- Introduction0:05
- Idea: Hidden Roots1:16
- Roots in Complex Form1:42
- All Polynomials Have Roots2:08
- Fundamental Theorem of Algebra2:21
- Where Are All the Imaginary Roots, Then?3:17
- All Roots are Complex3:45
- Real Numbers are a Subset of Complex Numbers3:59
- The n Roots Theorem5:01
- For Any Polynomial, Its Degree is Equal to the Number of Roots5:11
- Equivalent Statement5:24
- Comments: Multiplicity6:29
- Non-Distinct Roots6:59
- Denoting Multiplicity7:20
- Comments: Complex Numbers Necessary7:41
- Comments: Complex Coefficients Allowed8:55
- Comments: Existence Theorem9:59
- Proof Sketch of n Roots Theorem10:45
- First Root11:36
- Second Root13:23
- Continuation to Find all Roots16:00
33m 22s
- Intro0:00
- Introduction0:05
- Definition of a Rational Function1:20
- Examples of Rational Functions2:30
- Why They are Called 'Rational'2:47
- Domain of a Rational Function3:15
- Undefined at Denominator Zeros3:25
- Otherwise all Reals4:16
- Investigating a Fundamental Function4:50
- The Domain of the Function5:04
- What Occurs at the Zeroes of the Denominator5:20
- Idea of a Vertical Asymptote6:23
- What's Going On?6:58
- Approaching x=0 from the left7:32
- Approaching x=0 from the right8:34
- Dividing by Very Small Numbers Results in Very Large Numbers9:31
- Definition of a Vertical Asymptote10:05
- Vertical Asymptotes and Graphs11:15
- Drawing Asymptotes by Using a Dashed Line11:27
- The Graph Can Never Touch Its Undefined Point12:00
- Not All Zeros Give Asymptotes13:02
- Special Cases: When Numerator and Denominator Go to Zero at the Same Time14:58
- Cancel out Common Factors15:49
- How to Find Vertical Asymptotes16:10
- Figure out What Values Are Not in the Domain of x16:24
- Determine if the Numerator and Denominator Share Common Factors and Cancel16:45
- Find Denominator Roots17:33
- Note if Asymptote Approaches Negative or Positive Infinity18:06
- Example 118:57
- Example 221:26
- Example 323:04
- Example 430:01
34m 16s
- Intro0:00
- Introduction0:05
- Investigating a Fundamental Function0:53
- What Happens as x Grows Large1:00
- Different View1:12
- Idea of a Horizontal Asymptote1:36
- What's Going On?2:24
- What Happens as x Grows to a Large Negative Number2:49
- What Happens as x Grows to a Large Number3:30
- Dividing by Very Large Numbers Results in Very Small Numbers3:52
- Example Function4:41
- Definition of a Vertical Asymptote8:09
- Expanding the Idea9:03
- What's Going On?9:48
- What Happens to the Function in the Long Run?9:51
- Rewriting the Function10:13
- Definition of a Slant Asymptote12:09
- Symbolical Definition12:30
- Informal Definition12:45
- Beyond Slant Asymptotes13:03
- Not Going Beyond Slant Asymptotes14:39
- Horizontal/Slant Asymptotes and Graphs15:43
- How to Find Horizontal and Slant Asymptotes16:52
- How to Find Horizontal Asymptotes17:12
- Expand the Given Polynomials17:18
- Compare the Degrees of the Numerator and Denominator17:40
- How to Find Slant Asymptotes20:05
- Slant Asymptotes Exist When n+m=120:08
- Use Polynomial Division20:24
- Example 124:32
- Example 225:53
- Example 326:55
- Example 429:22
49m 7s
- Intro0:00
- Introduction0:05
- A Process for Graphing1:22
- 1. Factor Numerator and Denominator1:50
- 2. Find Domain2:53
- 3. Simplifying the Function3:59
- 4. Find Vertical Asymptotes4:59
- 5. Find Horizontal/Slant Asymptotes5:24
- 6. Find Intercepts7:35
- 7. Draw Graph (Find Points as Necessary)9:21
- Draw Graph Example11:21
- Vertical Asymptote11:41
- Horizontal Asymptote11:50
- Other Graphing12:16
- Test Intervals15:08
- Example 117:57
- Example 223:01
- Example 329:02
- Example 433:37
44m 56s
- Intro0:00
- Introduction: Idea0:04
- Introduction: Prerequisites and Uses1:57
- Proper vs. Improper Polynomial Fractions3:11
- Possible Things in the Denominator4:38
- Linear Factors6:16
- Example of Linear Factors7:03
- Multiple Linear Factors7:48
- Irreducible Quadratic Factors8:25
- Example of Quadratic Factors9:26
- Multiple Quadratic Factors9:49
- Mixing Factor Types10:28
- Figuring Out the Numerator11:10
- How to Solve for the Constants11:30
- Quick Example11:40
- Example 114:29
- Example 218:35
- Example 320:33
- Example 428:51
35m 17s
- Intro0:00
- Introduction0:05
- Fundamental Idea1:46
- Expanding the Idea2:28
- Multiplication of the Same Base2:40
- Exponents acting on Exponents3:45
- Different Bases with the Same Exponent4:31
- To the Zero5:35
- To the First5:45
- Fundamental Rule with the Zero Power6:35
- To the Negative7:45
- Any Number to a Negative Power8:14
- A Fraction to a Negative Power9:58
- Division with Exponential Terms10:41
- To the Fraction11:33
- Square Root11:58
- Any Root12:59
- Summary of Rules14:38
- To the Irrational17:21
- Example 120:34
- Example 223:42
- Example 327:44
- Example 431:44
- Example 533:15
47m 4s
- Intro0:00
- Introduction0:05
- Definition of an Exponential Function0:48
- Definition of the Base1:02
- Restrictions on the Base1:16
- Computing Exponential Functions2:29
- Harder Computations3:10
- When to Use a Calculator3:21
- Graphing Exponential Functions: a>16:02
- Three Examples6:13
- What to Notice on the Graph7:44
- A Story8:27
- Story Diagram9:15
- Increasing Exponentials11:29
- Story Morals14:40
- Application: Compound Interest15:15
- Compounding Year after Year16:01
- Function for Compounding Interest16:51
- A Special Number: e20:55
- Expression for e21:28
- Where e stabilizes21:55
- Application: Continuously Compounded Interest24:07
- Equation for Continuous Compounding24:22
- Exponential Decay 0<a<125:50
- Three Examples26:11
- Why they 'lose' value26:54
- Example 127:47
- Example 233:11
- Example 336:34
- Example 441:28
40m 31s
- Intro0:00
- Introduction0:04
- Definition of a Logarithm, Base 20:51
- Log 2 Defined0:55
- Examples2:28
- Definition of a Logarithm, General3:23
- Examples of Logarithms5:15
- Problems with Unusual Bases7:38
- Shorthand Notation: ln and log9:44
- base e as ln10:01
- base 10 as log10:34
- Calculating Logarithms11:01
- using a calculator11:34
- issues with other bases11:58
- Graphs of Logarithms13:21
- Three Examples13:29
- Slow Growth15:19
- Logarithms as Inverse of Exponentiation16:02
- Using Base 216:05
- General Case17:10
- Looking More Closely at Logarithm Graphs19:16
- The Domain of Logarithms20:41
- Thinking about Logs like Inverses21:08
- The Alternate24:00
- Example 125:59
- Example 230:03
- Example 332:49
- Example 437:34
42m 33s
- Intro0:00
- Introduction0:04
- Basic Properties1:12
- Inverse--log(exp)1:43
- A Key Idea2:44
- What We Get through Exponentiation3:18
- B Always Exists4:50
- Inverse--exp(log)5:53
- Logarithm of a Power7:44
- Logarithm of a Product10:07
- Logarithm of a Quotient13:48
- Caution! There Is No Rule for loga(M+N)16:12
- Summary of Properties17:42
- Change of Base--Motivation20:17
- No Calculator Button20:59
- A Specific Example21:45
- Simplifying23:45
- Change of Base--Formula24:14
- Example 125:47
- Example 229:08
- Example 331:14
- Example 434:13
34m 10s
- Intro0:00
- Introduction0:05
- One to One Property1:09
- Exponential1:26
- Logarithmic1:44
- Specific Considerations2:02
- One-to-One Property3:30
- Solving by One-to-One4:11
- Inverse Property6:09
- Solving by Inverses7:25
- Dealing with Equations7:50
- Example of Taking an Exponent or Logarithm of an Equation9:07
- A Useful Property11:57
- Bring Down Exponents12:01
- Try to Simplify13:20
- Extraneous Solutions13:45
- Example 116:37
- Example 219:39
- Example 321:37
- Example 426:45
- Example 529:37
48m 46s
- Intro0:00
- Introduction0:06
- Applications of Exponential Functions1:07
- A Secret!2:17
- Natural Exponential Growth Model3:07
- Figure out r3:34
- A Secret!--Why Does It Work?4:44
- e to the r Morphs4:57
- Example5:06
- Applications of Logarithmic Functions8:32
- Examples8:43
- What Logarithms are Useful For9:53
- Example 111:29
- Example 215:30
- Example 326:22
- Example 432:05
- Example 539:19
39m 5s
- Intro0:00
- Degrees0:22
- Circle is 360 Degrees0:48
- Splitting a Circle1:13
- Radians2:08
- Circle is 2 Pi Radians2:31
- One Radian2:52
- Half-Circle and Right Angle4:00
- Converting Between Degrees and Radians6:24
- Formulas for Degrees and Radians6:52
- Coterminal, Complementary, Supplementary Angles7:23
- Coterminal Angles7:30
- Complementary Angles9:40
- Supplementary Angles10:08
- Example 1: Dividing a Circle10:38
- Example 2: Converting Between Degrees and Radians11:56
- Example 3: Quadrants and Coterminal Angles14:18
- Extra Example 1: Common Angle Conversions-1
- Extra Example 2: Quadrants and Coterminal Angles-2
43m 16s
- Intro0:00
- Sine and Cosine0:15
- Unit Circle0:22
- Coordinates on Unit Circle1:03
- Right Triangles1:52
- Adjacent, Opposite, Hypotenuse2:25
- Master Right Triangle Formula: SOHCAHTOA2:48
- Odd Functions, Even Functions4:40
- Example: Odd Function4:56
- Example: Even Function7:30
- Example 1: Sine and Cosine10:27
- Example 2: Graphing Sine and Cosine Functions14:39
- Example 3: Right Triangle21:40
- Example 4: Odd, Even, or Neither26:01
- Extra Example 1: Right Triangle-1
- Extra Example 2: Graphing Sine and Cosine Functions-2
33m 5s
- Intro0:00
- 45-45-90 Triangle and 30-60-90 Triangle0:08
- 45-45-90 Triangle0:21
- 30-60-90 Triangle2:06
- Mnemonic: All Students Take Calculus (ASTC)5:21
- Using the Unit Circle5:59
- New Angles6:21
- Other Quadrants9:43
- Mnemonic: All Students Take Calculus10:13
- Example 1: Convert, Quadrant, Sine/Cosine13:11
- Example 2: Convert, Quadrant, Sine/Cosine16:48
- Example 3: All Angles and Quadrants20:21
- Extra Example 1: Convert, Quadrant, Sine/Cosine-1
- Extra Example 2: All Angles and Quadrants-2
52m 3s
- Intro0:00
- Amplitude and Period of a Sine Wave0:38
- Sine Wave Graph0:58
- Amplitude: Distance from Middle to Peak1:18
- Peak: Distance from Peak to Peak2:41
- Phase Shift and Vertical Shift4:13
- Phase Shift: Distance Shifted Horizontally4:16
- Vertical Shift: Distance Shifted Vertically6:48
- Example 1: Amplitude/Period/Phase and Vertical Shift8:04
- Example 2: Amplitude/Period/Phase and Vertical Shift17:39
- Example 3: Find Sine Wave Given Attributes25:23
- Extra Example 1: Amplitude/Period/Phase and Vertical Shift-1
- Extra Example 2: Find Cosine Wave Given Attributes-2
36m 4s
- Intro0:00
- Tangent and Cotangent Definitions0:21
- Tangent Definition0:25
- Cotangent Definition0:47
- Master Formula: SOHCAHTOA1:01
- Mnemonic1:16
- Tangent and Cotangent Values2:29
- Remember Common Values of Sine and Cosine2:46
- 90 Degrees Undefined4:36
- Slope and Menmonic: ASTC5:47
- Uses of Tangent5:54
- Example: Tangent of Angle is Slope6:09
- Sign of Tangent in Quadrants7:49
- Example 1: Graph Tangent and Cotangent Functions10:42
- Example 2: Tangent and Cotangent of Angles16:09
- Example 3: Odd, Even, or Neither18:56
- Extra Example 1: Tangent and Cotangent of Angles-1
- Extra Example 2: Tangent and Cotangent of Angles-2
27m 18s
- Intro0:00
- Secant and Cosecant Definitions0:17
- Secant Definition0:18
- Cosecant Definition0:33
- Example 1: Graph Secant Function0:48
- Example 2: Values of Secant and Cosecant6:49
- Example 3: Odd, Even, or Neither12:49
- Extra Example 1: Graph of Cosecant Function-1
- Extra Example 2: Values of Secant and Cosecant-2
32m 58s
- Intro0:00
- Arcsine Function0:24
- Restrictions between -1 and 10:43
- Arcsine Notation1:26
- Arccosine Function3:07
- Restrictions between -1 and 13:36
- Cosine Notation3:53
- Arctangent Function4:30
- Between -Pi/2 and Pi/24:44
- Tangent Notation5:02
- Example 1: Domain/Range/Graph of Arcsine5:45
- Example 2: Arcsin/Arccos/Arctan Values10:46
- Example 3: Domain/Range/Graph of Arctangent17:14
- Extra Example 1: Domain/Range/Graph of Arccosine-1
- Extra Example 2: Arcsin/Arccos/Arctan Values-2
31m 8s
- Intro0:00
- Inverse Trigonometric Function Domains and Ranges0:31
- Arcsine0:41
- Arccosine1:14
- Arctangent1:41
- Example 1: Arcsines of Common Values2:44
- Example 2: Odd, Even, or Neither5:57
- Example 3: Arccosines of Common Values12:24
- Extra Example 1: Arctangents of Common Values-1
- Extra Example 2: Arcsin/Arccos/Arctan Values-2
19m 11s
- Intro0:00
- Pythagorean Identity0:17
- Pythagorean Triangle0:27
- Pythagorean Identity0:45
- Example 1: Use Pythagorean Theorem to Prove Pythagorean Identity1:14
- Example 2: Find Angle Given Cosine and Quadrant4:18
- Example 3: Verify Trigonometric Identity8:00
- Extra Example 1: Use Pythagorean Identity to Prove Pythagorean Theorem-1
- Extra Example 2: Find Angle Given Cosine and Quadrant-2
23m 16s
- Intro0:00
- Main Formulas0:19
- Companion to Pythagorean Identity0:27
- For Cotangents and Cosecants0:52
- How to Remember0:58
- Example 1: Prove the Identity1:40
- Example 2: Given Tan Find Sec3:42
- Example 3: Prove the Identity7:45
- Extra Example 1: Prove the Identity-1
- Extra Example 2: Given Sec Find Tan-2
52m 52s
- Intro0:00
- Addition and Subtraction Formulas0:09
- How to Remember0:48
- Cofunction Identities1:31
- How to Remember Graphically1:44
- Where to Use Cofunction Identities2:52
- Example 1: Derive the Formula for cos(A-B)3:08
- Example 2: Use Addition and Subtraction Formulas16:03
- Example 3: Use Addition and Subtraction Formulas to Prove Identity25:11
- Extra Example 1: Use cos(A-B) and Cofunction Identities-1
- Extra Example 2: Convert to Radians and use Formulas-2
29m 5s
- Intro0:00
- Main Formula0:07
- How to Remember from Addition Formula0:18
- Two Other Forms1:35
- Example 1: Find Sine and Cosine of Angle using Double Angle3:16
- Example 2: Prove Trigonometric Identity using Double Angle9:37
- Example 3: Use Addition and Subtraction Formulas12:38
- Extra Example 1: Find Sine and Cosine of Angle using Double Angle-1
- Extra Example 2: Prove Trigonometric Identity using Double Angle-2
43m 55s
- Intro0:00
- Main Formulas0:09
- Confusing Part0:34
- Example 1: Find Sine and Cosine of Angle using Half-Angle0:54
- Example 2: Prove Trigonometric Identity using Half-Angle11:51
- Example 3: Prove the Half-Angle Formula for Tangents18:39
- Extra Example 1: Find Sine and Cosine of Angle using Half-Angle-1
- Extra Example 2: Prove Trigonometric Identity using Half-Angle-2
25m 43s
- Intro0:00
- Master Formula for Right Angles0:11
- SOHCAHTOA0:15
- Only for Right Triangles1:26
- Example 1: Find All Angles in a Triangle2:19
- Example 2: Find Lengths of All Sides of Triangle7:39
- Example 3: Find All Angles in a Triangle11:00
- Extra Example 1: Find All Angles in a Triangle-1
- Extra Example 2: Find Lengths of All Sides of Triangle-2
56m 40s
- Intro0:00
- Law of Sines Formula0:18
- SOHCAHTOA0:27
- Any Triangle0:59
- Graphical Representation1:25
- Solving Triangle Completely2:37
- When to Use Law of Sines2:55
- ASA, SAA, SSA, AAA2:59
- SAS, SSS for Law of Cosines7:11
- Example 1: How Many Triangles Satisfy Conditions, Solve Completely8:44
- Example 2: How Many Triangles Satisfy Conditions, Solve Completely15:30
- Example 3: How Many Triangles Satisfy Conditions, Solve Completely28:32
- Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely-1
- Extra Example 2: How Many Triangles Satisfy Conditions, Solve Completely-2
49m 5s
- Intro0:00
- Law of Cosines Formula0:23
- Graphical Representation0:34
- Relates Sides to Angles1:00
- Any Triangle1:20
- Generalization of Pythagorean Theorem1:32
- When to Use Law of Cosines2:26
- SAS, SSS2:30
- Heron's Formula4:49
- Semiperimeter S5:11
- Example 1: How Many Triangles Satisfy Conditions, Solve Completely5:53
- Example 2: How Many Triangles Satisfy Conditions, Solve Completely15:19
- Example 3: Find Area of a Triangle Given All Side Lengths26:33
- Extra Example 1: How Many Triangles Satisfy Conditions, Solve Completely-1
- Extra Example 2: Length of Third Side and Area of Triangle-2
27m 37s
- Intro0:00
- Master Right Triangle Formula and Law of Cosines0:19
- SOHCAHTOA0:27
- Law of Cosines1:23
- Heron's Formula2:22
- Semiperimeter S2:37
- Example 1: Area of Triangle with Two Sides and One Angle3:12
- Example 2: Area of Triangle with Three Sides6:11
- Example 3: Area of Triangle with Three Sides, No Heron's Formula8:50
- Extra Example 1: Area of Triangle with Two Sides and One Angle-1
- Extra Example 2: Area of Triangle with Two Sides and One Angle-2
34m 25s
- Intro0:00
- Formulas to Remember0:11
- SOHCAHTOA0:15
- Law of Sines0:55
- Law of Cosines1:48
- Heron's Formula2:46
- Example 1: Telephone Pole Height4:01
- Example 2: Bridge Length7:48
- Example 3: Area of Triangular Field14:20
- Extra Example 1: Kite Height-1
- Extra Example 2: Roads to a Town-2
55m 40s
- Intro0:00
- Introduction0:04
- Graphs as Location of 'True'1:49
- All Locations that Make the Function True2:25
- Understand the Relationship Between Solutions and the Graph3:43
- Systems as Graphs4:07
- Equations as Lines4:20
- Intersection Point5:19
- Three Possibilities for Solutions6:17
- Independent6:24
- Inconsistent6:36
- Dependent7:06
- Solving by Substitution8:37
- Solve for One Variable9:07
- Substitute into the Second Equation9:34
- Solve for Both Variables10:12
- What If a System is Inconsistent or Dependent?11:08
- No Solutions11:25
- Infinite Solutions12:30
- Solving by Elimination13:56
- Example14:22
- Determining the Number of Solutions16:30
- Why Elimination Makes Sense17:25
- Solving by Graphing Calculator19:59
- Systems with More than Two Variables23:22
- Example 125:49
- Example 230:22
- Example 334:11
- Example 438:55
- Example 546:01
- (Non-) Example 653:37
1h 13s
- Intro0:00
- Introduction0:04
- Inequality Refresher-Solutions0:46
- Equation Solutions vs. Inequality Solutions1:02
- Essentially a Wide Variety of Answers1:35
- Refresher--Negative Multiplication Flips1:43
- Refresher--Negative Flips: Why?3:19
- Multiplication by a Negative3:43
- The Relationship Flips3:55
- Refresher--Stick to Basic Operations4:34
- Linear Equations in Two Variables6:50
- Graphing Linear Inequalities8:28
- Why It Includes a Whole Section8:43
- How to Show The Difference Between Strict and Not Strict Inequalities10:08
- Dashed Line--Not Solutions11:10
- Solid Line--Are Solutions11:24
- Test Points for Shading11:42
- Example of Using a Point12:41
- Drawing Shading from the Point13:14
- Graphing a System14:53
- Set of Solutions is the Overlap15:17
- Example15:22
- Solutions are Best Found Through Graphing18:05
- Linear Programming-Idea19:52
- Use a Linear Objective Function20:15
- Variables in Objective Function have Constraints21:24
- Linear Programming-Method22:09
- Rearrange Equations22:21
- Graph22:49
- Critical Solution is at the Vertex of the Overlap23:40
- Try Each Vertice24:35
- Example 124:58
- Example 228:57
- Example 333:48
- Example 443:10
41m 1s
- Intro0:00
- Introduction0:06
- Substitution1:12
- Example1:22
- Elimination3:46
- Example3:56
- Elimination is Less Useful for Nonlinear Systems4:56
- Graphing5:56
- Using a Graphing Calculator6:44
- Number of Solutions8:44
- Systems of Nonlinear Inequalities10:02
- Graph Each Inequality10:06
- Dashed and/or Solid10:18
- Shade Appropriately11:14
- Example 113:24
- Example 215:50
- Example 322:02
- Example 429:06
- Example 4, cont.33:40
1h 9m 31s
- Intro0:00
- Introduction0:10
- Magnitude of the Force0:22
- Direction of the Force0:48
- Vector0:52
- Idea of a Vector1:30
- How Vectors are Denoted2:00
- Component Form3:20
- Angle Brackets and Parentheses3:50
- Magnitude/Length4:26
- Denoting the Magnitude of a Vector5:16
- Direction/Angle7:52
- Always Draw a Picture8:50
- Component Form from Magnitude & Angle10:10
- Scaling by Scalars14:06
- Unit Vectors16:26
- Combining Vectors - Algebraically18:10
- Combining Vectors - Geometrically19:54
- Resultant Vector20:46
- Alternate Component Form: i, j21:16
- The Zero Vector23:18
- Properties of Vectors24:20
- No Multiplication (Between Vectors)28:30
- Dot Product29:40
- Motion in a Medium30:10
- Fish in an Aquarium Example31:38
- More Than Two Dimensions33:12
- More Than Two Dimensions - Magnitude34:18
- Example 135:26
- Example 238:10
- Example 345:48
- Example 450:40
- Example 4, cont.56:07
- Example 51:01:32
35m 20s
- Intro0:00
- Introduction0:08
- Dot Product - Definition0:42
- Dot Product Results in a Scalar, Not a Vector2:10
- Example in Two Dimensions2:34
- Angle and the Dot Product2:58
- The Dot Product of Two Vectors is Deeply Related to the Angle Between the Two Vectors2:59
- Proof of Dot Product Formula4:14
- Won't Directly Help Us Better Understand Vectors4:18
- Dot Product - Geometric Interpretation4:58
- We Can Interpret the Dot Product as a Measure of How Long and How Parallel Two Vectors Are7:26
- Dot Product - Perpendicular Vectors8:24
- If the Dot Product of Two Vectors is 0, We Know They are Perpendicular to Each Other8:54
- Cross Product - Definition11:08
- Cross Product Only Works in Three Dimensions11:09
- Cross Product - A Mnemonic12:16
- The Determinant of a 3 x 3 Matrix and Standard Unit Vectors12:17
- Cross Product - Geometric Interpretations14:30
- The Right-Hand Rule15:17
- Cross Product - Geometric Interpretations Cont.17:00
- Example 118:40
- Example 222:50
- Example 324:04
- Example 426:20
- Bonus Round29:18
- Proof: Dot Product Formula29:24
- Proof: Dot Product Formula, cont.30:38
54m 7s
- Intro0:00
- Introduction0:08
- Definition of a Matrix3:02
- Size or Dimension3:58
- Square Matrix4:42
- Denoted by Capital Letters4:56
- When are Two Matrices Equal?5:04
- Examples of Matrices6:44
- Rows x Columns6:46
- Talking About Specific Entries7:48
- We Use Capitals to Denote a Matrix and Lower Case to Denotes Its Entries8:32
- Using Entries to Talk About Matrices10:08
- Scalar Multiplication11:26
- Scalar = Real Number11:34
- Example12:36
- Matrix Addition13:08
- Example14:22
- Matrix Multiplication15:00
- Example18:52
- Matrix Multiplication, cont.19:58
- Matrix Multiplication and Order (Size)25:26
- Make Sure Their Orders are Compatible25:27
- Matrix Multiplication is NOT Commutative28:20
- Example30:08
- Special Matrices - Zero Matrix (0)32:48
- Zero Matrix Has 0 for All of its Entries32:49
- Special Matrices - Identity Matrix (I)34:14
- Identity Matrix is a Square Matrix That Has 1 for All Its Entries on the Main Diagonal and 0 for All Other Entries34:15
- Example 136:16
- Example 240:00
- Example 344:54
- Example 450:08
47m 12s
- Intro0:00
- Introduction0:06
- Not All Matrices Are Invertible1:30
- What Must a Matrix Have to Be Invertible?2:08
- Determinant2:32
- The Determinant is a Real Number Associated With a Square Matrix2:38
- If the Determinant of a Matrix is Nonzero, the Matrix is Invertible3:40
- Determinant of a 2 x 2 Matrix4:34
- Think in Terms of Diagonals5:12
- Minors and Cofactors - Minors6:24
- Example6:46
- Minors and Cofactors - Cofactors8:00
- Cofactor is Closely Based on the Minor8:01
- Alternating Sign Pattern9:04
- Determinant of Larger Matrices10:56
- Example13:00
- Alternative Method for 3x3 Matrices16:46
- Not Recommended16:48
- Inverse of a 2 x 2 Matrix19:02
- Inverse of Larger Matrices20:00
- Using Inverse Matrices21:06
- When Multiplied Together, They Create the Identity Matrix21:24
- Example 123:45
- Example 227:21
- Example 332:49
- Example 436:27
- Finding the Inverse of Larger Matrices41:59
- General Inverse Method - Step 143:25
- General Inverse Method - Step 243:27
- General Inverse Method - Step 2, cont.43:27
- General Inverse Method - Step 345:15
58m 34s
- Intro0:00
- Introduction0:12
- Augmented Matrix1:44
- We Can Represent the Entire Linear System With an Augmented Matrix1:50
- Row Operations3:22
- Interchange the Locations of Two Rows3:50
- Multiply (or Divide) a Row by a Nonzero Number3:58
- Add (or Subtract) a Multiple of One Row to Another4:12
- Row Operations - Keep Notes!5:50
- Suggested Symbols7:08
- Gauss-Jordan Elimination - Idea8:04
- Gauss-Jordan Elimination - Idea, cont.9:16
- Reduced Row-Echelon Form9:18
- Gauss-Jordan Elimination - Method11:36
- Begin by Writing the System As An Augmented Matrix11:38
- Gauss-Jordan Elimination - Method, cont.13:48
- Cramer's Rule - 2 x 2 Matrices17:08
- Cramer's Rule - n x n Matrices19:24
- Solving with Inverse Matrices21:10
- Solving Inverse Matrices, cont.25:28
- The Mighty (Graphing) Calculator26:38
- Example 129:56
- Example 233:56
- Example 337:00
- Example 3, cont.45:04
- Example 451:28
53m 33s
- Intro0:00
- Introduction0:06
- Definition1:10
- Plane Curve1:24
- The Key Idea2:00
- Graphing with Parametric Equations2:52
- Same Graph, Different Equations5:04
- How Is That Possible?5:36
- Same Graph, Different Equations, cont.5:42
- Here's Another to Consider7:56
- Same Plane Curve, But Still Different8:10
- A Metaphor for Parametric Equations9:36
- Think of Parametric Equations As a Way to Describe the Motion of An Object9:38
- Graph Shows Where It Went, But Not Speed10:32
- Eliminating Parameters12:14
- Rectangular Equation12:16
- Caution13:52
- Creating Parametric Equations14:30
- Interesting Graphs16:38
- Graphing Calculators, Yay!19:18
- Example 122:36
- Example 228:26
- Example 337:36
- Example 441:00
- Projectile Motion44:26
- Example 547:00
48m 7s
- Intro0:00
- Introduction0:04
- Polar Coordinates Give Us a Way To Describe the Location of a Point0:26
- Polar Equations and Functions0:50
- Plotting Points with Polar Coordinates1:06
- The Distance of the Point from the Origin1:09
- The Angle of the Point1:33
- Give Points as the Ordered Pair (r,θ)2:03
- Visualizing Plotting in Polar Coordinates2:32
- First Way We Can Plot2:39
- Second Way We Can Plot2:50
- First, We'll Look at Visualizing r, Then θ3:09
- Rotate the Length Counter-Clockwise by θ3:38
- Alternatively, We Can Visualize θ, Then r4:06
- 'Polar Graph Paper'6:17
- Horizontal and Vertical Tick Marks Are Not Useful for Polar6:42
- Use Concentric Circles to Helps Up See Distance From the Pole7:08
- Can Use Arc Sectors to See Angles7:57
- Multiple Ways to Name a Point9:17
- Examples9:30
- For Any Angle θ, We Can Make an Equivalent Angle10:44
- Negative Values for r11:58
- If r Is Negative, We Go In The Direction Opposite the One That The Angle θ Points Out12:22
- Another Way to Name the Same Point: Add π to θ and Make r Negative13:44
- Converting Between Rectangular and Polar14:37
- Rectangular Way to Name14:43
- Polar Way to Name14:52
- The Rectangular System Must Have a Right Angle Because It's Based on a Rectangle15:08
- Connect Both Systems Through Basic Trigonometry15:38
- Equation to Convert From Polar to Rectangular Coordinate Systems16:55
- Equation to Convert From Rectangular to Polar Coordinate Systems17:13
- Converting to Rectangular is Easy17:20
- Converting to Polar is a Bit Trickier17:21
- Draw Pictures18:55
- Example 119:50
- Example 225:17
- Example 331:05
- Example 435:56
- Example 541:49
38m 16s
- Intro0:00
- Introduction0:04
- Equations and Functions1:16
- Independent Variable1:21
- Dependent Variable1:30
- Examples1:46
- Always Assume That θ Is In Radians2:44
- Graphing in Polar Coordinates3:29
- Graph is the Same Way We Graph 'Normal' Stuff3:32
- Example3:52
- Graphing in Polar - Example, Cont.6:45
- Tips for Graphing9:23
- Notice Patterns10:19
- Repetition13:39
- Graphing Equations of One Variable14:39
- Converting Coordinate Types16:16
- Use the Same Conversion Formulas From the Previous Lesson16:23
- Interesting Graphs17:48
- Example 118:03
- Example 218:34
- Graphing Calculators, Yay!19:07
- Plot Random Things, Alter Equations You Understand, Get a Sense for How Polar Stuff Works19:11
- Check Out the Appendix19:26
- Example 121:36
- Example 228:13
- Example 334:24
- Example 435:52
40m 43s
- Intro0:00
- Polar Coordinates0:49
- Rectangular Form0:52
- Polar Form1:25
- R and Theta1:51
- Polar Form Conversion2:27
- R and Theta2:35
- Optimal Values4:05
- Euler's Formula4:25
- Multiplying Two Complex Numbers in Polar Form6:10
- Multiply r's Together and Add Exponents6:32
- Example 1: Convert Rectangular to Polar Form7:17
- Example 2: Convert Polar to Rectangular Form13:49
- Example 3: Multiply Two Complex Numbers17:28
- Extra Example 1: Convert Between Rectangular and Polar Forms-1
- Extra Example 2: Simplify Expression to Polar Form-2
57m 37s
- Intro0:00
- Introduction to DeMoivre's Theorem0:10
- n nth Roots3:06
- DeMoivre's Theorem: Finding nth Roots3:52
- Relation to Unit Circle6:29
- One nth Root for Each Value of k7:11
- Example 1: Convert to Polar Form and Use DeMoivre's Theorem8:24
- Example 2: Find Complex Eighth Roots15:27
- Example 3: Find Complex Roots27:49
- Extra Example 1: Convert to Polar Form and Use DeMoivre's Theorem-1
- Extra Example 2: Find Complex Fourth Roots-2
31m 36s
- Intro0:00
- Introduction0:08
- Combinatorics0:56
- Definition: Event1:24
- Example1:50
- Visualizing an Event3:02
- Branching line diagram3:06
- Addition Principle3:40
- Example4:18
- Multiplication Principle5:42
- Example6:24
- Pigeonhole Principle8:06
- Example10:26
- Draw Pictures11:06
- Example 112:02
- Example 214:16
- Example 317:34
- Example 421:26
- Example 525:14
44m 3s
- Intro0:00
- Introduction0:08
- Permutation0:42
- Combination1:10
- Towards a Permutation Formula2:38
- How Many Ways Can We Arrange the Letters A, B, C, D, and E?3:02
- Towards a Permutation Formula, cont.3:34
- Factorial Notation6:56
- Symbol Is '!'6:58
- Examples7:32
- Permutation of n Objects8:44
- Permutation of r Objects out of n9:04
- What If We Have More Objects Than We Have Slots to Fit Them Into?9:46
- Permutation of r Objects Out of n, cont.10:28
- Distinguishable Permutations14:46
- What If Not All Of the Objects We're Permuting Are Distinguishable From Each Other?14:48
- Distinguishable Permutations, cont.17:04
- Combinations19:04
- Combinations, cont.20:56
- Example 123:10
- Example 226:16
- Example 328:28
- Example 431:52
- Example 533:58
- Example 636:34
36m 58s
- Intro0:00
- Introduction0:06
- Definition: Sample Space1:18
- Event = Something Happening1:20
- Sample Space1:36
- Probability of an Event2:12
- Let E Be An Event and S Be The Corresponding Sample Space2:14
- 'Equally Likely' Is Important3:52
- Fair and Random5:26
- Interpreting Probability6:34
- How Can We Interpret This Value?7:24
- We Can Represent Probability As a Fraction, a Decimal, Or a Percentage8:04
- One of Multiple Events Occurring9:52
- Mutually Exclusive Events10:38
- What If The Events Are Not Mutually Exclusive?12:20
- Taking the Possibility of Overlap Into Account13:24
- An Event Not Occurring17:14
- Complement of E17:22
- Independent Events19:36
- Independent19:48
- Conditional Events21:28
- What Is The Events Are Not Independent Though?21:30
- Conditional Probability22:16
- Conditional Events, cont.23:51
- Example 125:27
- Example 227:09
- Example 328:57
- Example 430:51
- Example 534:15
41m 27s
- Intro0:00
- What is a Parabola?0:20
- Definition of a Parabola0:29
- Focus0:59
- Directrix1:15
- Axis of Symmetry3:08
- Vertex3:33
- Minimum or Maximum3:44
- Standard Form4:59
- Horizontal Parabolas5:08
- Vertex Form5:19
- Upward or Downward5:41
- Example: Standard Form6:06
- Graphing Parabolas8:31
- Shifting8:51
- Example: Completing the Square9:22
- Symmetry and Translation12:18
- Example: Graph Parabola12:40
- Latus Rectum17:13
- Length18:15
- Example: Latus Rectum18:35
- Horizontal Parabolas18:57
- Not Functions20:08
- Example: Horizontal Parabola21:21
- Focus and Directrix24:11
- Horizontal24:48
- Example 1: Parabola Standard Form25:12
- Example 2: Graph Parabola30:00
- Example 3: Graph Parabola33:13
- Example 4: Parabola Equation37:28
21m 3s
- Intro0:00
- What are Circles?0:08
- Example: Equidistant0:17
- Radius0:32
- Equation of a Circle0:44
- Example: Standard Form1:11
- Graphing Circles1:47
- Example: Circle1:56
- Center Not at Origin3:07
- Example: Completing the Square3:51
- Example 1: Equation of Circle6:44
- Example 2: Center and Radius11:51
- Example 3: Radius15:08
- Example 4: Equation of Circle16:57
46m 51s
- Intro0:00
- What Are Ellipses?0:11
- Foci0:23
- Properties of Ellipses1:43
- Major Axis, Minor Axis1:47
- Center1:54
- Length of Major Axis and Minor Axis3:21
- Standard Form5:33
- Example: Standard Form of Ellipse6:09
- Vertical Major Axis9:14
- Example: Vertical Major Axis9:46
- Graphing Ellipses12:51
- Complete the Square and Symmetry13:00
- Example: Graphing Ellipse13:16
- Equation with Center at (h, k)19:57
- Horizontal and Vertical20:14
- Difference20:27
- Example: Center at (h, k)20:55
- Example 1: Equation of Ellipse24:05
- Example 2: Equation of Ellipse27:57
- Example 3: Equation of Ellipse32:32
- Example 4: Graph Ellipse38:27
38m 15s
- Intro0:00
- What are Hyperbolas?0:12
- Two Branches0:18
- Foci0:38
- Properties2:00
- Transverse Axis and Conjugate Axis2:06
- Vertices2:46
- Length of Transverse Axis3:14
- Distance Between Foci3:31
- Length of Conjugate Axis3:38
- Standard Form5:45
- Vertex Location6:36
- Known Points6:52
- Vertical Transverse Axis7:26
- Vertex Location7:50
- Asymptotes8:36
- Vertex Location8:56
- Rectangle9:28
- Diagonals10:29
- Graphing Hyperbolas12:58
- Example: Hyperbola13:16
- Equation with Center at (h, k)16:32
- Example: Center at (h, k)17:21
- Example 1: Equation of Hyperbola19:20
- Example 2: Equation of Hyperbola22:48
- Example 3: Graph Hyperbola26:05
- Example 4: Equation of Hyperbola36:29
18m 43s
- Intro0:00
- Conic Sections0:16
- Double Cone Sections0:24
- Standard Form1:27
- General Form1:37
- Identify Conic Sections2:16
- B = 02:50
- X and Y3:22
- Identify Conic Sections, Cont.4:46
- Parabola5:17
- Circle5:51
- Ellipse6:31
- Hyperbola7:10
- Example 1: Identify Conic Section8:01
- Example 2: Identify Conic Section11:03
- Example 3: Identify Conic Section11:38
- Example 4: Identify Conic Section14:50
57m 45s
- Intro0:00
- Introduction0:06
- Definition: Sequence0:28
- Infinite Sequence2:08
- Finite Sequence2:22
- Length2:58
- Formula for the nth Term3:22
- Defining a Sequence Recursively5:54
- Initial Term7:58
- Sequences and Patterns10:40
- First, Identify a Pattern12:52
- How to Get From One Term to the Next17:38
- Tips for Finding Patterns19:52
- More Tips for Finding Patterns24:14
- Even More Tips26:50
- Example 130:32
- Example 234:54
- Fibonacci Sequence34:55
- Example 338:40
- Example 445:02
- Example 549:26
- Example 651:54
40m 27s
- Intro0:00
- Introduction0:06
- Definition: Series1:20
- Why We Need Notation2:48
- Simga Notation (AKA Summation Notation)4:44
- Thing Being Summed5:42
- Index of Summation6:21
- Lower Limit of Summation7:09
- Upper Limit of Summation7:23
- Sigma Notation, Example7:36
- Sigma Notation for Infinite Series9:08
- How to Reindex10:58
- How to Reindex, Expanding12:56
- How to Reindex, Substitution16:46
- Properties of Sums19:42
- Example 123:46
- Example 225:34
- Example 327:12
- Example 429:54
- Example 532:06
- Example 637:16
31m 36s
- Intro0:00
- Introduction0:05
- Definition: Arithmetic Sequence0:47
- Common Difference1:13
- Two Examples1:19
- Form for the nth Term2:14
- Recursive Relation2:33
- Towards an Arithmetic Series Formula5:12
- Creating a General Formula10:09
- General Formula for Arithmetic Series14:23
- Example 115:46
- Example 217:37
- Example 322:21
- Example 424:09
- Example 527:14
39m 27s
- Intro0:00
- Introduction0:06
- Definition0:48
- Form for the nth Term2:42
- Formula for Geometric Series5:16
- Infinite Geometric Series11:48
- Diverges13:04
- Converges14:48
- Formula for Infinite Geometric Series16:32
- Example 120:32
- Example 222:02
- Example 326:00
- Example 430:48
- Example 534:28
49m 53s
- Intro0:00
- Introduction0:06
- Belief Vs. Proof1:22
- A Metaphor for Induction6:14
- The Principle of Mathematical Induction11:38
- Base Case13:24
- Inductive Step13:30
- Inductive Hypothesis13:52
- A Remark on Statements14:18
- Using Mathematical Induction16:58
- Working Example19:58
- Finding Patterns28:46
- Example 130:17
- Example 237:50
- Example 342:38
1h 13m 13s
- Intro0:00
- Introduction0:06
- We've Learned That a Binomial Is An Expression That Has Two Terms0:07
- Understanding Binomial Coefficients1:20
- Things We Notice2:24
- What Goes In the Blanks?5:52
- Each Blank is Called a Binomial Coefficient6:18
- The Binomial Theorem6:38
- Example8:10
- The Binomial Theorem, cont.10:46
- We Can Also Write This Expression Compactly Using Sigma Notation12:06
- Proof of the Binomial Theorem13:22
- Proving the Binomial Theorem Is Within Our Reach13:24
- Pascal's Triangle15:12
- Pascal's Triangle, cont.16:12
- Diagonal Addition of Terms16:24
- Zeroth Row18:04
- First Row18:12
- Why Do We Care About Pascal's Triangle?18:50
- Pascal's Triangle, Example19:26
- Example 121:26
- Example 224:34
- Example 328:34
- Example 432:28
- Example 537:12
- Time for the Fireworks!43:38
- Proof of the Binomial Theorem43:44
- We'll Prove This By Induction44:04
- Proof (By Induction)46:36
- Proof, Base Case47:00
- Proof, Inductive Step - Notation Discussion49:22
- Induction Step49:24
- Proof, Inductive Step - Setting Up52:26
- Induction Hypothesis52:34
- What We What To Show52:44
- Proof, Inductive Step - Start54:18
- Proof, Inductive Step - Middle55:38
- Expand Sigma Notations55:48
- Proof, Inductive Step - Middle, cont.58:40
- Proof, Inductive Step - Checking In1:01:08
- Let's Check In With Our Original Goal1:01:12
- Want to Show1:01:18
- Lemma - A Mini Theorem1:02:18
- Proof, Inductive Step - Lemma1:02:52
- Proof of Lemma: Let's Investigate the Left Side1:03:08
- Proof, Inductive Step - Nearly There1:07:54
- Proof, Inductive Step - End!1:09:18
- Proof, Inductive Step - End!, cont.1:11:01
40m 22s
- Intro0:00
- Introduction0:05
- Motivating Example1:26
- Fuzzy Notion of a Limit3:38
- Limit is the Vertical Location a Function is Headed Towards3:44
- Limit is What the Function Output is Going to Be4:15
- Limit Notation4:33
- Exploring Limits - 'Ordinary' Function5:26
- Test Out5:27
- Graphing, We See The Answer Is What We Would Expect5:44
- Exploring Limits - Piecewise Function6:45
- If We Modify the Function a Bit6:49
- Exploring Limits - A Visual Conception10:08
- Definition of a Limit12:07
- If f(x) Becomes Arbitrarily Close to Some Number L as x Approaches Some Number c, Then the Limit of f(x) As a Approaches c is L.12:09
- We Are Not Concerned with f(x) at x=c12:49
- We Are Considering x Approaching From All Directions, Not Just One Side13:10
- Limits Do Not Always Exist15:47
- Finding Limits19:49
- Graphs19:52
- Tables21:48
- Precise Methods24:53
- Example 126:06
- Example 227:39
- Example 330:51
- Example 433:11
- Example 537:07
57m 11s
- Intro0:00
- Introduction0:06
- New Greek Letters2:42
- Delta3:14
- Epsilon3:46
- Sometimes Called the Epsilon-Delta Definition of a Limit3:56
- Formal Definition of a Limit4:22
- What does it MEAN!?!?5:00
- The Groundwork5:38
- Set Up the Limit5:39
- The Function is Defined Over Some Portion of the Reals5:58
- The Horizontal Location is the Value the Limit Will Approach6:28
- The Vertical Location L is Where the Limit Goes To7:00
- The Epsilon-Delta Part7:26
- The Hard Part is the Second Part of the Definition7:30
- Second Half of Definition10:04
- Restrictions on the Allowed x Values10:28
- The Epsilon-Delta Part, cont.13:34
- Sherlock Holmes and Dr. Watson15:08
- The Adventure of the Delta-Epsilon Limit15:16
- Setting15:18
- We Begin By Setting Up the Game As Follows15:52
- The Adventure of the Delta-Epsilon, cont.17:24
- This Game is About Limits17:46
- What If I Try Larger?19:39
- Technically, You Haven't Proven the Limit20:53
- Here is the Method21:18
- What We Should Concern Ourselves With22:20
- Investigate the Left Sides of the Expressions25:24
- We Can Create the Following Inequalities28:08
- Finally…28:50
- Nothing Like a Good Proof to Develop the Appetite30:42
- Example 131:02
- Example 1, cont.36:26
- Example 241:46
- Example 2, cont.47:50
32m 40s
- Intro0:00
- Introduction0:08
- Method - 'Normal' Functions2:04
- The Easiest Limits to Find2:06
- It Does Not 'Break'2:18
- It Is Not Piecewise2:26
- Method - 'Normal' Functions, Example3:38
- Method - 'Normal' Functions, cont.4:54
- The Functions We're Used to Working With Go Where We Expect Them To Go5:22
- A Limit is About Figuring Out Where a Function is 'Headed'5:42
- Method - Canceling Factors7:18
- One Weird Thing That Often Happens is Dividing By 07:26
- Method - Canceling Factors, cont.8:16
- Notice That The Two Functions Are Identical With the Exception of x=08:20
- Method - Canceling Factors, cont.10:00
- Example10:52
- Method - Rationalization12:04
- Rationalizing a Portion of Some Fraction12:05
- Conjugate12:26
- Method - Rationalization, cont.13:14
- Example13:50
- Method - Piecewise16:28
- The Limits of Piecewise Functions16:30
- Example 117:42
- Example 218:44
- Example 320:20
- Example 422:24
- Example 524:24
- Example 627:12
32m 43s
- Intro0:00
- Introduction0:06
- Motivating Example0:56
- Continuity - Idea2:14
- Continuous Function2:18
- All Parts of Function Are Connected2:28
- Function's Graph Can Be Drawn Without Lifting Pencil2:36
- There Are No Breaks or Holes in Graph2:56
- Continuity - Idea, cont.3:38
- We Can Interpret the Break in the Continuity of f(x) as an Issue With the Function 'Jumping'3:52
- Continuity - Definition5:16
- A Break in Continuity is Caused By the Limit Not Matching Up With What the Function Does5:18
- Discontinuous6:02
- Discontinuity6:10
- Continuity and 'Normal' Functions6:48
- Return of the Motivating Example8:14
- One-Sided Limit8:48
- One-Sided Limit - Definition9:16
- Only Considers One Side9:20
- Be Careful to Keep Track of Which Symbol Goes With Which Side10:06
- One-Sided Limit - Example10:50
- There Does Not Necessarily Need to Be a Connection Between Left or Right Side Limits11:16
- Normal Limits and One-Sided Limits12:08
- Limits of Piecewise Functions14:12
- 'Breakover' Points14:22
- We Find the Limit of a Piecewise Function By Checking If the Left and Right Side Limits Agree With Each Other15:34
- Example 116:40
- Example 218:54
- Example 322:00
- Example 426:36
32m 49s
- Intro0:00
- Introduction0:06
- Definition: Limit of a Function at Infinity1:44
- A Limit at Infinity Works Very Similarly to How a Normal Limit Works2:38
- Evaluating Limits at Infinity4:08
- Rational Functions4:17
- Examples4:30
- For a Rational Function, the Question Boils Down to Comparing the Long Term Growth Rates of the Numerator and Denominator5:22
- There are Three Possibilities6:36
- Evaluating Limits at Infinity, cont.8:08
- Does the Function Grow Without Bound? Will It 'Settle Down' Over Time?10:06
- Two Good Ways to Think About This10:26
- Limit of a Sequence12:20
- What Value Does the Sequence Tend to Do in the Long-Run?12:41
- The Limit of a Sequence is Very Similar to the Limit of a Function at Infinity12:52
- Numerical Evaluation14:16
- Numerically: Plug in Numbers and See What Comes Out14:24
- Example 116:42
- Example 221:00
- Example 322:08
- Example 426:14
- Example 528:10
- Example 631:06
51m 13s
- Intro0:00
- Introduction0:08
- The Derivative of a Function Gives Us a Way to Talk About 'How Fast' the Function If Changing0:16
- Instantaneous Slop0:22
- Instantaneous Rate of Change0:28
- Slope1:24
- The Vertical Change Divided by the Horizontal1:40
- Idea of Instantaneous Slope2:10
- What If We Wanted to Apply the Idea of Slope to a Non-Line?2:14
- Tangent to a Circle3:52
- What is the Tangent Line for a Circle?4:42
- Tangent to a Curve5:20
- Towards a Derivative - Average Slope6:36
- Towards a Derivative - Average Slope, cont.8:20
- An Approximation11:24
- Towards a Derivative - General Form13:18
- Towards a Derivative - General Form, cont.16:46
- An h Grows Smaller, Our Slope Approximation Becomes Better18:44
- Towards a Derivative - Limits!20:04
- Towards a Derivative - Limits!, cont.22:08
- We Want to Show the Slope at x=122:34
- Towards a Derivative - Checking Our Slope23:12
- Definition of the Derivative23:54
- Derivative: A Way to Find the Instantaneous Slope of a Function at Any Point23:58
- Differentiation24:54
- Notation for the Derivative25:58
- The Derivative is a Very Important Idea In Calculus26:04
- The Important Idea27:34
- Why Did We Learn the Formal Definition to Find a Derivative?28:18
- Example 130:50
- Example 236:06
- Example 340:24
- The Power Rule44:16
- Makes It Easier to Find the Derivative of a Function44:24
- Examples45:04
- n Is Any Constant Number45:46
- Example 446:26
45m 26s
- Intro0:00
- Introduction0:06
- Integral0:12
- Idea of Area Under a Curve1:18
- Approximation by Rectangles2:12
- The Easiest Way to Find Area is With a Rectangle2:18
- Various Methods for Choosing Rectangles4:30
- Rectangle Method - Left-Most Point5:12
- The Left-Most Point5:16
- Rectangle Method - Right-Most Point5:58
- The Right-Most Point6:00
- Rectangle Method - Mid-Point6:42
- Horizontal Mid-Point6:48
- Rectangle Method - Maximum (Upper Sum)7:34
- Maximum Height7:40
- Rectangle Method - Minimum8:54
- Minimum Height9:02
- Evaluating the Area Approximation10:08
- Split the Interval Into n Sub-Intervals10:30
- More Rectangles, Better Approximation12:14
- The More We Us , the Better Our Approximation Becomes12:16
- Our Approximation Becomes More Accurate as the Number of Rectangles n Goes Off to Infinity12:44
- Finding Area with a Limit13:08
- If This Limit Exists, It Is Called the Integral From a to b14:08
- The Process of Finding Integrals is Called Integration14:22
- The Big Reveal14:40
- The Integral is Based on the Antiderivative14:46
- The Big Reveal - Wait, Why?16:28
- The Rate of Change for the Area is Based on the Height of the Function16:50
- Height is the Derivative of Area, So Area is Based on the Antiderivative of Height17:50
- Example 119:06
- Example 222:48
- Example 329:06
- Example 3, cont.35:14
- Example 440:14
10m 41s
- Intro0:00
- Should You Buy?0:06
- Should I Get a Graphing Utility?0:20
- Free Graphing Utilities - Web Based0:38
- Personal Favorite: Desmos0:58
- Free Graphing Utilities - Offline Programs1:18
- GeoGebra1:31
- Microsoft Mathematics1:50
- Grapher2:18
- Other Graphing Utilities - Tablet/Phone2:48
- Should You Buy a Graphing Calculator?3:22
- The Only Real Downside4:10
- Deciding on Buying4:20
- If You Plan on Continuing in Math and/or Science4:26
- If Money is Not Particularly Tight for You4:32
- If You Don't Plan to Continue in Math and Science5:02
- If You Do Plan to Continue and Money Is Tight5:28
- Which to Buy5:44
- Which Graphing Calculator is Best?5:46
- Too Many Factors5:54
- Do Your Research6:12
- The Old Standby7:10
- TI-83 (Plus)7:16
- TI-84 (Plus)7:18
- Tips for Purchasing9:17
- Buy Online9:19
- Buy Used9:35
- Ask Around10:09
10m 51s
- Intro0:00
- Read the Manual0:06
- Skim It0:20
- Play Around and Experiment0:34
- Syntax0:40
- Definition of Syntax in English and Math0:46
- Pay Careful Attention to Your Syntax When Working With a Calculator2:08
- Make Sure You Use Parentheses to Indicate the Proper Order of Operations2:16
- Think About the Results3:54
- Settings4:58
- You'll Almost Never Need to Change the Settings on Your Calculator5:00
- Tell Calculator In Settings Whether the Angles Are In Radians or Degrees5:26
- Graphing Mode6:32
- Error Messages7:10
- Don't Panic7:11
- Internet Search7:32
- So Many Things8:14
- More Powerful Than You Realize8:18
- Other Things Your Graphing Calculator Can Do8:24
- Playing Around9:16
10m 38s
- Intro0:00
- Graphing Functions0:18
- Graphing Calculator Expects the Variable to Be x0:28
- Syntax0:58
- The Syntax We Choose Will Affect How the Function Graphs1:00
- Use Parentheses1:26
- The Viewing Window2:00
- One of the Most Important Ideas When Graphing Is To Think About The Viewing Window2:01
- For Example2:30
- The Viewing Window, cont.2:36
- Window Settings3:24
- Manually Choose Window Settings4:20
- x Min4:40
- x Max4:42
- y Min4:44
- y Max4:46
- Changing the x Scale or y Scale5:08
- Window Settings, cont.5:44
- Table of Values7:38
- Allows You to Quickly Churn Out Values for Various Inputs7:42
- For example7:44
- Changing the Independent Variable From 'Automatic' to 'Ask'8:50
9m 45s
- Intro0:00
- Points of Interest0:06
- Interesting Points on the Graph0:11
- Roots/Zeros (Zero)0:18
- Relative Minimums (Min)0:26
- Relative Maximums (Max)0:32
- Intersections (Intersection)0:38
- Finding Points of Interest - Process1:48
- Graph the Function1:49
- Adjust Viewing Window2:12
- Choose Point of Interest Type2:54
- Identify Where Search Should Occur3:04
- Give a Guess3:36
- Get Result4:06
- Advanced Technique: Arbitrary Solving5:10
- Find Out What Input Value Causes a Certain Output5:12
- For Example5:24
- Advanced Technique: Calculus7:18
- Derivative7:22
- Integral7:30
- But How Do You Show Work?8:20
7m 8s
- Intro0:00
- Change Graph Type0:08
- Located in General 'Settings'0:16
- Graphing in Parametric1:06
- Set Up Both Horizontal Function and Vertical Function1:08
- For Example2:04
- Graphing in Polar4:00
- For Example4:28
1 answer
Tue Dec 20, 2022 3:12 PM
Post by Hannah Yao on December 17, 2022
At 5:15, you write that the y coordinate of A is cosB. Shouldn't the y coordinate be sinA?
1 answer
Wed Jul 15, 2020 11:52 AM
Post by Ann Gao on July 13, 2020
Hi professor, what are the common values of sin and cos that we should memorize?
1 answer
Mon May 25, 2020 10:56 AM
Post by Kevin Liang on May 24, 2020
Hello Professor, I don't get why in extra example 1, you used sin(A-B) for the last example instead of cos(A-B)?
1 answer
Fri May 1, 2020 9:40 AM
Post by Penny Huang on April 30, 2020
In 9min20sec, why it is (cos(A-B)-1)^2? Why we should minus 1?
1 answer
Fri Aug 17, 2018 7:03 PM
Post by John Stedge on August 9, 2018
Extra Example 2 at 6:17, Bless you.
1 answer
Sat Aug 13, 2016 10:54 AM
Post by tae Sin on August 12, 2016
I know this question is frivolous - I don't mind anyone answering this question if they know this is possible, but I used a calculator when I was bored. And I spammed sincostansincostan() with some random value - I'm pretty sure I used a real number that didn't create undefined value. And I actually got a value, so can you somehow explain how this is possible? if it does relate to the addition and subtraction formulas, please explain them as well?
2 answers
Wed Apr 27, 2016 4:51 PM
Post by Tania Torres on April 26, 2016
Regarding Iris Kim's question, "At 12:14, you wrote that (cos(A-B)-1)^2 equals cos(A-B)^2-2cos(A-B)... shouldn't it be cos(A-B)^2-2cos(A-B)+1?" and your response, why is it not '+ 1'?
2 answers
Wed Jul 1, 2015 8:52 AM
Post by Iris Kim on June 30, 2015
At 12:14, you wrote that (cos(A-B)-1)^2 equals cos(A-B)^2-2cos(A-B)... shouldn't it be cos(A-B)^2-2cos(A-B)+1?
2 answers
Last reply by: Ann Gao
Mon Jul 13, 2020 11:21 AM
Post by olga shevchuk on November 16, 2014
THERE WAS A MISTAKE. IT WAS WRITTEN 2SIN(3X)COS(X) WHEN IT SHOULD HAVE BEEN 2SIN(3X)COS(2X) STARTING @28:10
1 answer
Tue Aug 5, 2014 3:49 PM
Post by Jamal Tischler on July 23, 2014
Very good lesson. I apreciate you derived the formulas ! It helped me.
3 answers
Mon Jun 23, 2014 7:44 PM
Post by Jeffrey Tao on June 21, 2014
In your response to Manfred Berger's question, you stated how it is possible to use the Euler's formula, e^ix=cosx+isinx, to prove the identities,as a way that did not use calculus. But from what I've learned, the derivation of the formula e^ix=cosx+isinx comes from power series, so doesn't this method of proving the identities still use calculus?
1 answer
Tue Dec 10, 2013 11:32 PM
Post by Monis Mirza on December 7, 2013
Write an equivalent expression for sin(2m)cos(n)+ cos(2m) sin(n)
3 answers
Thu Jul 18, 2013 8:20 AM
Post by Manfred Berger on June 28, 2013
Are you going to prove any of the addition formulas in Calc 2?
1 answer
Fri Aug 31, 2012 5:26 PM
Post by Su Jung Leem on August 2, 2012
I know it's a irrelevant question but i wasn't sure where to ask this question. Does anyeone know how to add y+2 over y squared - y -2 and one over 3y+3 ? I keep on getting different answers every time I trying to answer this question. please help!!!
1 answer
Sun May 12, 2013 5:21 PM
Post by Nathan Thomas on January 8, 2012
He didn't include the tangent sum difference formulas which is very important and shouldn't be skipped over.
tan(a + b) =
(tan a + tan b) / (1 - (tan a)(tan b)
tan(a - b) =
(tan a - tan b) / (1 + (tan a)(tan b)
1 answer
Sun May 12, 2013 5:19 PM
Post by Elina Bugar on August 23, 2011
how did he get the coordinates of angle a to be cosA,cosB
and for angle B (SinA, CosB)
3 answers
Sun May 12, 2013 5:15 PM
Post by Marco Zendejo on June 22, 2011
Im kinda confuse in Example II.
How did Pie/12 turn into pie/4 - pie/6
If anyone could explain this I'll be grateful.
2 answers
Sun May 12, 2013 5:11 PM
Post by Judith Gleco on June 11, 2011
Hi,
I was wandering if anyone is having any problems with the recording glitching, or stopping and going back to the begining of the lesson. Help so I know if it is my computer.
7 answers
Sun May 12, 2013 5:07 PM
Post by Mark Mccraney on January 15, 2010
Lecture 3, ex 1: shouldn't the coords written in blue be A=(cosA, sinB) vs A=(cosA, cosB)