Dr. Ji Son

Dr. Ji Son

Overview of Statistics

Slide Duration:

Table of Contents

Section 1: Introduction
Descriptive Statistics vs. Inferential Statistics

25m 31s

Intro
0:00
Roadmap
0:10
Roadmap
0:11
Statistics
0:35
Statistics
0:36
Let's Think About High School Science
1:12
Measurement and Find Patterns (Mathematical Formula)
1:13
Statistics = Math of Distributions
4:58
Distributions
4:59
Problematic… but also GREAT
5:58
Statistics
7:33
How is It Different from Other Specializations in Mathematics?
7:34
Statistics is Fundamental in Natural and Social Sciences
7:53
Two Skills of Statistics
8:20
Description (Exploration)
8:21
Inference
9:13
Descriptive Statistics vs. Inferential Statistics: Apply to Distributions
9:58
Descriptive Statistics
9:59
Inferential Statistics
11:05
Populations vs. Samples
12:19
Populations vs. Samples: Is it the Truth?
12:20
Populations vs. Samples: Pros & Cons
13:36
Populations vs. Samples: Descriptive Values
16:12
Putting Together Descriptive/Inferential Stats & Populations/Samples
17:10
Putting Together Descriptive/Inferential Stats & Populations/Samples
17:11
Example 1: Descriptive Statistics vs. Inferential Statistics
19:09
Example 2: Descriptive Statistics vs. Inferential Statistics
20:47
Example 3: Sample, Parameter, Population, and Statistic
21:40
Example 4: Sample, Parameter, Population, and Statistic
23:28
Section 2: About Samples: Cases, Variables, Measurements
About Samples: Cases, Variables, Measurements

32m 14s

Intro
0:00
Data
0:09
Data, Cases, Variables, and Values
0:10
Rows, Columns, and Cells
2:03
Example: Aircrafts
3:52
How Do We Get Data?
5:38
Research: Question and Hypothesis
5:39
Research Design
7:11
Measurement
7:29
Research Analysis
8:33
Research Conclusion
9:30
Types of Variables
10:03
Discrete Variables
10:04
Continuous Variables
12:07
Types of Measurements
14:17
Types of Measurements
14:18
Types of Measurements (Scales)
17:22
Nominal
17:23
Ordinal
19:11
Interval
21:33
Ratio
24:24
Example 1: Cases, Variables, Measurements
25:20
Example 2: Which Scale of Measurement is Used?
26:55
Example 3: What Kind of a Scale of Measurement is This?
27:26
Example 4: Discrete vs. Continuous Variables.
30:31
Section 3: Visualizing Distributions
Introduction to Excel

8m 9s

Intro
0:00
Before Visualizing Distribution
0:10
Excel
0:11
Excel: Organization
0:45
Workbook
0:46
Column x Rows
1:50
Tools: Menu Bar, Standard Toolbar, and Formula Bar
3:00
Excel + Data
6:07
Exce and Data
6:08
Frequency Distributions in Excel

39m 10s

Intro
0:00
Roadmap
0:08
Data in Excel and Frequency Distributions
0:09
Raw Data to Frequency Tables
0:42
Raw Data to Frequency Tables
0:43
Frequency Tables: Using Formulas and Pivot Tables
1:28
Example 1: Number of Births
7:17
Example 2: Age Distribution
20:41
Example 3: Height Distribution
27:45
Example 4: Height Distribution of Males
32:19
Frequency Distributions and Features

25m 29s

Intro
0:00
Roadmap
0:10
Data in Excel, Frequency Distributions, and Features of Frequency Distributions
0:11
Example #1
1:35
Uniform
1:36
Example #2
2:58
Unimodal, Skewed Right, and Asymmetric
2:59
Example #3
6:29
Bimodal
6:30
Example #4a
8:29
Symmetric, Unimodal, and Normal
8:30
Point of Inflection and Standard Deviation
11:13
Example #4b
12:43
Normal Distribution
12:44
Summary
13:56
Uniform, Skewed, Bimodal, and Normal
13:57
Sketch Problem 1: Driver's License
17:34
Sketch Problem 2: Life Expectancy
20:01
Sketch Problem 3: Telephone Numbers
22:01
Sketch Problem 4: Length of Time Used to Complete a Final Exam
23:43
Dotplots and Histograms in Excel

42m 42s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Previously
1:02
Data, Frequency Table, and visualization
1:03
Dotplots
1:22
Dotplots Excel Example
1:23
Dotplots: Pros and Cons
7:22
Pros and Cons of Dotplots
7:23
Dotplots Excel Example Cont.
9:07
Histograms
12:47
Histograms Overview
12:48
Example of Histograms
15:29
Histograms: Pros and Cons
31:39
Pros
31:40
Cons
32:31
Frequency vs. Relative Frequency
32:53
Frequency
32:54
Relative Frequency
33:36
Example 1: Dotplots vs. Histograms
34:36
Example 2: Age of Pennies Dotplot
36:21
Example 3: Histogram of Mammal Speeds
38:27
Example 4: Histogram of Life Expectancy
40:30
Stemplots

12m 23s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
What Sets Stemplots Apart?
0:46
Data Sets, Dotplots, Histograms, and Stemplots
0:47
Example 1: What Do Stemplots Look Like?
1:58
Example 2: Back-to-Back Stemplots
5:00
Example 3: Quiz Grade Stemplot
7:46
Example 4: Quiz Grade & Afterschool Tutoring Stemplot
9:56
Bar Graphs

22m 49s

Intro
0:00
Roadmap
0:05
Roadmap
0:08
Review of Frequency Distributions
0:44
Y-axis and X-axis
0:45
Types of Frequency Visualizations Covered so Far
2:16
Introduction to Bar Graphs
4:07
Example 1: Bar Graph
5:32
Example 1: Bar Graph
5:33
Do Shapes, Center, and Spread of Distributions Apply to Bar Graphs?
11:07
Do Shapes, Center, and Spread of Distributions Apply to Bar Graphs?
11:08
Example 2: Create a Frequency Visualization for Gender
14:02
Example 3: Cases, Variables, and Frequency Visualization
16:34
Example 4: What Kind of Graphs are Shown Below?
19:29
Section 4: Summarizing Distributions
Central Tendency: Mean, Median, Mode

38m 50s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
Central Tendency 1
0:56
Way to Summarize a Distribution of Scores
0:57
Mode
1:32
Median
2:02
Mean
2:36
Central Tendency 2
3:47
Mode
3:48
Median
4:20
Mean
5:25
Summation Symbol
6:11
Summation Symbol
6:12
Population vs. Sample
10:46
Population vs. Sample
10:47
Excel Examples
15:08
Finding Mode, Median, and Mean in Excel
15:09
Median vs. Mean
21:45
Effect of Outliers
21:46
Relationship Between Parameter and Statistic
22:44
Type of Measurements
24:00
Which Distributions to Use With
24:55
Example 1: Mean
25:30
Example 2: Using Summation Symbol
29:50
Example 3: Average Calorie Count
32:50
Example 4: Creating an Example Set
35:46
Variability

42m 40s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Variability (or Spread)
0:45
Variability (or Spread)
0:46
Things to Think About
5:45
Things to Think About
5:46
Range, Quartiles and Interquartile Range
6:37
Range
6:38
Interquartile Range
8:42
Interquartile Range Example
10:58
Interquartile Range Example
10:59
Variance and Standard Deviation
12:27
Deviations
12:28
Sum of Squares
14:35
Variance
16:55
Standard Deviation
17:44
Sum of Squares (SS)
18:34
Sum of Squares (SS)
18:35
Population vs. Sample SD
22:00
Population vs. Sample SD
22:01
Population vs. Sample
23:20
Mean
23:21
SD
23:51
Example 1: Find the Mean and Standard Deviation of the Variable Friends in the Excel File
27:21
Example 2: Find the Mean and Standard Deviation of the Tagged Photos in the Excel File
35:25
Example 3: Sum of Squares
38:58
Example 4: Standard Deviation
41:48
Five Number Summary & Boxplots

57m 15s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Summarizing Distributions
0:37
Shape, Center, and Spread
0:38
5 Number Summary
1:14
Boxplot: Visualizing 5 Number Summary
3:37
Boxplot: Visualizing 5 Number Summary
3:38
Boxplots on Excel
9:01
Using 'Stocks' and Using Stacked Columns
9:02
Boxplots on Excel Example
10:14
When are Boxplots Useful?
32:14
Pros
32:15
Cons
32:59
How to Determine Outlier Status
33:24
Rule of Thumb: Upper Limit
33:25
Rule of Thumb: Lower Limit
34:16
Signal Outliers in an Excel Data File Using Conditional Formatting
34:52
Modified Boxplot
48:38
Modified Boxplot
48:39
Example 1: Percentage Values & Lower and Upper Whisker
49:10
Example 2: Boxplot
50:10
Example 3: Estimating IQR From Boxplot
53:46
Example 4: Boxplot and Missing Whisker
54:35
Shape: Calculating Skewness & Kurtosis

41m 51s

Intro
0:00
Roadmap
0:16
Roadmap
0:17
Skewness Concept
1:09
Skewness Concept
1:10
Calculating Skewness
3:26
Calculating Skewness
3:27
Interpreting Skewness
7:36
Interpreting Skewness
7:37
Excel Example
8:49
Kurtosis Concept
20:29
Kurtosis Concept
20:30
Calculating Kurtosis
24:17
Calculating Kurtosis
24:18
Interpreting Kurtosis
29:01
Leptokurtic
29:35
Mesokurtic
30:10
Platykurtic
31:06
Excel Example
32:04
Example 1: Shape of Distribution
38:28
Example 2: Shape of Distribution
39:29
Example 3: Shape of Distribution
40:14
Example 4: Kurtosis
41:10
Normal Distribution

34m 33s

Intro
0:00
Roadmap
0:13
Roadmap
0:14
What is a Normal Distribution
0:44
The Normal Distribution As a Theoretical Model
0:45
Possible Range of Probabilities
3:05
Possible Range of Probabilities
3:06
What is a Normal Distribution
5:07
Can Be Described By
5:08
Properties
5:49
'Same' Shape: Illusion of Different Shape!
7:35
'Same' Shape: Illusion of Different Shape!
7:36
Types of Problems
13:45
Example: Distribution of SAT Scores
13:46
Shape Analogy
19:48
Shape Analogy
19:49
Example 1: The Standard Normal Distribution and Z-Scores
22:34
Example 2: The Standard Normal Distribution and Z-Scores
25:54
Example 3: Sketching and Normal Distribution
28:55
Example 4: Sketching and Normal Distribution
32:32
Standard Normal Distributions & Z-Scores

41m 44s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
A Family of Distributions
0:28
Infinite Set of Distributions
0:29
Transforming Normal Distributions to 'Standard' Normal Distribution
1:04
Normal Distribution vs. Standard Normal Distribution
2:58
Normal Distribution vs. Standard Normal Distribution
2:59
Z-Score, Raw Score, Mean, & SD
4:08
Z-Score, Raw Score, Mean, & SD
4:09
Weird Z-Scores
9:40
Weird Z-Scores
9:41
Excel
16:45
For Normal Distributions
16:46
For Standard Normal Distributions
19:11
Excel Example
20:24
Types of Problems
25:18
Percentage Problem: P(x)
25:19
Raw Score and Z-Score Problems
26:28
Standard Deviation Problems
27:01
Shape Analogy
27:44
Shape Analogy
27:45
Example 1: Deaths Due to Heart Disease vs. Deaths Due to Cancer
28:24
Example 2: Heights of Male College Students
33:15
Example 3: Mean and Standard Deviation
37:14
Example 4: Finding Percentage of Values in a Standard Normal Distribution
37:49
Normal Distribution: PDF vs. CDF

55m 44s

Intro
0:00
Roadmap
0:15
Roadmap
0:16
Frequency vs. Cumulative Frequency
0:56
Frequency vs. Cumulative Frequency
0:57
Frequency vs. Cumulative Frequency
4:32
Frequency vs. Cumulative Frequency Cont.
4:33
Calculus in Brief
6:21
Derivative-Integral Continuum
6:22
PDF
10:08
PDF for Standard Normal Distribution
10:09
PDF for Normal Distribution
14:32
Integral of PDF = CDF
21:27
Integral of PDF = CDF
21:28
Example 1: Cumulative Frequency Graph
23:31
Example 2: Mean, Standard Deviation, and Probability
24:43
Example 3: Mean and Standard Deviation
35:50
Example 4: Age of Cars
49:32
Section 5: Linear Regression
Scatterplots

47m 19s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
Previous Visualizations
0:30
Frequency Distributions
0:31
Compare & Contrast
2:26
Frequency Distributions Vs. Scatterplots
2:27
Summary Values
4:53
Shape
4:54
Center & Trend
6:41
Spread & Strength
8:22
Univariate & Bivariate
10:25
Example Scatterplot
10:48
Shape, Trend, and Strength
10:49
Positive and Negative Association
14:05
Positive and Negative Association
14:06
Linearity, Strength, and Consistency
18:30
Linearity
18:31
Strength
19:14
Consistency
20:40
Summarizing a Scatterplot
22:58
Summarizing a Scatterplot
22:59
Example 1: Gapminder.org, Income x Life Expectancy
26:32
Example 2: Gapminder.org, Income x Infant Mortality
36:12
Example 3: Trend and Strength of Variables
40:14
Example 4: Trend, Strength and Shape for Scatterplots
43:27
Regression

32m 2s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Linear Equations
0:34
Linear Equations: y = mx + b
0:35
Rough Line
5:16
Rough Line
5:17
Regression - A 'Center' Line
7:41
Reasons for Summarizing with a Regression Line
7:42
Predictor and Response Variable
10:04
Goal of Regression
12:29
Goal of Regression
12:30
Prediction
14:50
Example: Servings of Mile Per Year Shown By Age
14:51
Intrapolation
17:06
Extrapolation
17:58
Error in Prediction
20:34
Prediction Error
20:35
Residual
21:40
Example 1: Residual
23:34
Example 2: Large and Negative Residual
26:30
Example 3: Positive Residual
28:13
Example 4: Interpret Regression Line & Extrapolate
29:40
Least Squares Regression

56m 36s

Intro
0:00
Roadmap
0:13
Roadmap
0:14
Best Fit
0:47
Best Fit
0:48
Sum of Squared Errors (SSE)
1:50
Sum of Squared Errors (SSE)
1:51
Why Squared?
3:38
Why Squared?
3:39
Quantitative Properties of Regression Line
4:51
Quantitative Properties of Regression Line
4:52
So How do we Find Such a Line?
6:49
SSEs of Different Line Equations & Lowest SSE
6:50
Carl Gauss' Method
8:01
How Do We Find Slope (b1)
11:00
How Do We Find Slope (b1)
11:01
Hoe Do We Find Intercept
15:11
Hoe Do We Find Intercept
15:12
Example 1: Which of These Equations Fit the Above Data Best?
17:18
Example 2: Find the Regression Line for These Data Points and Interpret It
26:31
Example 3: Summarize the Scatterplot and Find the Regression Line.
34:31
Example 4: Examine the Mean of Residuals
43:52
Correlation

43m 58s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Summarizing a Scatterplot Quantitatively
0:47
Shape
0:48
Trend
1:11
Strength: Correlation ®
1:45
Correlation Coefficient ( r )
2:30
Correlation Coefficient ( r )
2:31
Trees vs. Forest
11:59
Trees vs. Forest
12:00
Calculating r
15:07
Average Product of z-scores for x and y
15:08
Relationship between Correlation and Slope
21:10
Relationship between Correlation and Slope
21:11
Example 1: Find the Correlation between Grams of Fat and Cost
24:11
Example 2: Relationship between r and b1
30:24
Example 3: Find the Regression Line
33:35
Example 4: Find the Correlation Coefficient for this Set of Data
37:37
Correlation: r vs. r-squared

52m 52s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
R-squared
0:44
What is the Meaning of It? Why Squared?
0:45
Parsing Sum of Squared (Parsing Variability)
2:25
SST = SSR + SSE
2:26
What is SST and SSE?
7:46
What is SST and SSE?
7:47
r-squared
18:33
Coefficient of Determination
18:34
If the Correlation is Strong…
20:25
If the Correlation is Strong…
20:26
If the Correlation is Weak…
22:36
If the Correlation is Weak…
22:37
Example 1: Find r-squared for this Set of Data
23:56
Example 2: What Does it Mean that the Simple Linear Regression is a 'Model' of Variance?
33:54
Example 3: Why Does r-squared Only Range from 0 to 1
37:29
Example 4: Find the r-squared for This Set of Data
39:55
Transformations of Data

27m 8s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Why Transform?
0:26
Why Transform?
0:27
Shape-preserving vs. Shape-changing Transformations
5:14
Shape-preserving = Linear Transformations
5:15
Shape-changing Transformations = Non-linear Transformations
6:20
Common Shape-Preserving Transformations
7:08
Common Shape-Preserving Transformations
7:09
Common Shape-Changing Transformations
8:59
Powers
9:00
Logarithms
9:39
Change Just One Variable? Both?
10:38
Log-log Transformations
10:39
Log Transformations
14:38
Example 1: Create, Graph, and Transform the Data Set
15:19
Example 2: Create, Graph, and Transform the Data Set
20:08
Example 3: What Kind of Model would You Choose for this Data?
22:44
Example 4: Transformation of Data
25:46
Section 6: Collecting Data in an Experiment
Sampling & Bias

54m 44s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Descriptive vs. Inferential Statistics
1:04
Descriptive Statistics: Data Exploration
1:05
Example
2:03
To tackle Generalization…
4:31
Generalization
4:32
Sampling
6:06
'Good' Sample
6:40
Defining Samples and Populations
8:55
Population
8:56
Sample
11:16
Why Use Sampling?
13:09
Why Use Sampling?
13:10
Goal of Sampling: Avoiding Bias
15:04
What is Bias?
15:05
Where does Bias Come from: Sampling Bias
17:53
Where does Bias Come from: Response Bias
18:27
Sampling Bias: Bias from Bas Sampling Methods
19:34
Size Bias
19:35
Voluntary Response Bias
21:13
Convenience Sample
22:22
Judgment Sample
23:58
Inadequate Sample Frame
25:40
Response Bias: Bias from 'Bad' Data Collection Methods
28:00
Nonresponse Bias
29:31
Questionnaire Bias
31:10
Incorrect Response or Measurement Bias
37:32
Example 1: What Kind of Biases?
40:29
Example 2: What Biases Might Arise?
44:46
Example 3: What Kind of Biases?
48:34
Example 4: What Kind of Biases?
51:43
Sampling Methods

14m 25s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Biased vs. Unbiased Sampling Methods
0:32
Biased Sampling
0:33
Unbiased Sampling
1:13
Probability Sampling Methods
2:31
Simple Random
2:54
Stratified Random Sampling
4:06
Cluster Sampling
5:24
Two-staged Sampling
6:22
Systematic Sampling
7:25
Example 1: Which Type(s) of Sampling was this?
8:33
Example 2: Describe How to Take a Two-Stage Sample from this Book
10:16
Example 3: Sampling Methods
11:58
Example 4: Cluster Sample Plan
12:48
Research Design

53m 54s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Descriptive vs. Inferential Statistics
0:51
Descriptive Statistics: Data Exploration
0:52
Inferential Statistics
1:02
Variables and Relationships
1:44
Variables
1:45
Relationships
2:49
Not Every Type of Study is an Experiment…
4:16
Category I - Descriptive Study
4:54
Category II - Correlational Study
5:50
Category III - Experimental, Quasi-experimental, Non-experimental
6:33
Category III
7:42
Experimental, Quasi-experimental, and Non-experimental
7:43
Why CAN'T the Other Strategies Determine Causation?
10:18
Third-variable Problem
10:19
Directionality Problem
15:49
What Makes Experiments Special?
17:54
Manipulation
17:55
Control (and Comparison)
21:58
Methods of Control
26:38
Holding Constant
26:39
Matching
29:11
Random Assignment
31:48
Experiment Terminology
34:09
'true' Experiment vs. Study
34:10
Independent Variable (IV)
35:16
Dependent Variable (DV)
35:45
Factors
36:07
Treatment Conditions
36:23
Levels
37:43
Confounds or Extraneous Variables
38:04
Blind
38:38
Blind Experiments
38:39
Double-blind Experiments
39:29
How Categories Relate to Statistics
41:35
Category I - Descriptive Study
41:36
Category II - Correlational Study
42:05
Category III - Experimental, Quasi-experimental, Non-experimental
42:43
Example 1: Research Design
43:50
Example 2: Research Design
47:37
Example 3: Research Design
50:12
Example 4: Research Design
52:00
Between and Within Treatment Variability

41m 31s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Experimental Designs
0:51
Experimental Designs: Manipulation & Control
0:52
Two Types of Variability
2:09
Between Treatment Variability
2:10
Within Treatment Variability
3:31
Updated Goal of Experimental Design
5:47
Updated Goal of Experimental Design
5:48
Example: Drugs and Driving
6:56
Example: Drugs and Driving
6:57
Different Types of Random Assignment
11:27
All Experiments
11:28
Completely Random Design
12:02
Randomized Block Design
13:19
Randomized Block Design
15:48
Matched Pairs Design
15:49
Repeated Measures Design
19:47
Between-subject Variable vs. Within-subject Variable
22:43
Completely Randomized Design
22:44
Repeated Measures Design
25:03
Example 1: Design a Completely Random, Matched Pair, and Repeated Measures Experiment
26:16
Example 2: Block Design
31:41
Example 3: Completely Randomized Designs
35:11
Example 4: Completely Random, Matched Pairs, or Repeated Measures Experiments?
39:01
Section 7: Review of Probability Axioms
Sample Spaces

37m 52s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
Why is Probability Involved in Statistics
0:48
Probability
0:49
Can People Tell the Difference between Cheap and Gourmet Coffee?
2:08
Taste Test with Coffee Drinkers
3:37
If No One can Actually Taste the Difference
3:38
If Everyone can Actually Taste the Difference
5:36
Creating a Probability Model
7:09
Creating a Probability Model
7:10
D'Alembert vs. Necker
9:41
D'Alembert vs. Necker
9:42
Problem with D'Alembert's Model
13:29
Problem with D'Alembert's Model
13:30
Covering Entire Sample Space
15:08
Fundamental Principle of Counting
15:09
Where Do Probabilities Come From?
22:54
Observed Data, Symmetry, and Subjective Estimates
22:55
Checking whether Model Matches Real World
24:27
Law of Large Numbers
24:28
Example 1: Law of Large Numbers
27:46
Example 2: Possible Outcomes
30:43
Example 3: Brands of Coffee and Taste
33:25
Example 4: How Many Different Treatments are there?
35:33
Addition Rule for Disjoint Events

20m 29s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Disjoint Events
0:41
Disjoint Events
0:42
Meaning of 'or'
2:39
In Regular Life
2:40
In Math/Statistics/Computer Science
3:10
Addition Rule for Disjoin Events
3:55
If A and B are Disjoint: P (A and B)
3:56
If A and B are Disjoint: P (A or B)
5:15
General Addition Rule
5:41
General Addition Rule
5:42
Generalized Addition Rule
8:31
If A and B are not Disjoint: P (A or B)
8:32
Example 1: Which of These are Mutually Exclusive?
10:50
Example 2: What is the Probability that You will Have a Combination of One Heads and Two Tails?
12:57
Example 3: Engagement Party
15:17
Example 4: Home Owner's Insurance
18:30
Conditional Probability

57m 19s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
'or' vs. 'and' vs. Conditional Probability
1:07
'or' vs. 'and' vs. Conditional Probability
1:08
'and' vs. Conditional Probability
5:57
P (M or L)
5:58
P (M and L)
8:41
P (M|L)
11:04
P (L|M)
12:24
Tree Diagram
15:02
Tree Diagram
15:03
Defining Conditional Probability
22:42
Defining Conditional Probability
22:43
Common Contexts for Conditional Probability
30:56
Medical Testing: Positive Predictive Value
30:57
Medical Testing: Sensitivity
33:03
Statistical Tests
34:27
Example 1: Drug and Disease
36:41
Example 2: Marbles and Conditional Probability
40:04
Example 3: Cards and Conditional Probability
45:59
Example 4: Votes and Conditional Probability
50:21
Independent Events

24m 27s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Independent Events & Conditional Probability
0:26
Non-independent Events
0:27
Independent Events
2:00
Non-independent and Independent Events
3:08
Non-independent and Independent Events
3:09
Defining Independent Events
5:52
Defining Independent Events
5:53
Multiplication Rule
7:29
Previously…
7:30
But with Independent Evens
8:53
Example 1: Which of These Pairs of Events are Independent?
11:12
Example 2: Health Insurance and Probability
15:12
Example 3: Independent Events
17:42
Example 4: Independent Events
20:03
Section 8: Probability Distributions
Introduction to Probability Distributions

56m 45s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Sampling vs. Probability
0:57
Sampling
0:58
Missing
1:30
What is Missing?
3:06
Insight: Probability Distributions
5:26
Insight: Probability Distributions
5:27
What is a Probability Distribution?
7:29
From Sample Spaces to Probability Distributions
8:44
Sample Space
8:45
Probability Distribution of the Sum of Two Die
11:16
The Random Variable
17:43
The Random Variable
17:44
Expected Value
21:52
Expected Value
21:53
Example 1: Probability Distributions
28:45
Example 2: Probability Distributions
35:30
Example 3: Probability Distributions
43:37
Example 4: Probability Distributions
47:20
Expected Value & Variance of Probability Distributions

53m 41s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Discrete vs. Continuous Random Variables
1:04
Discrete vs. Continuous Random Variables
1:05
Mean and Variance Review
4:44
Mean: Sample, Population, and Probability Distribution
4:45
Variance: Sample, Population, and Probability Distribution
9:12
Example Situation
14:10
Example Situation
14:11
Some Special Cases…
16:13
Some Special Cases…
16:14
Linear Transformations
19:22
Linear Transformations
19:23
What Happens to Mean and Variance of the Probability Distribution?
20:12
n Independent Values of X
25:38
n Independent Values of X
25:39
Compare These Two Situations
30:56
Compare These Two Situations
30:57
Two Random Variables, X and Y
32:02
Two Random Variables, X and Y
32:03
Example 1: Expected Value & Variance of Probability Distributions
35:35
Example 2: Expected Values & Standard Deviation
44:17
Example 3: Expected Winnings and Standard Deviation
48:18
Binomial Distribution

55m 15s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Discrete Probability Distributions
1:42
Discrete Probability Distributions
1:43
Binomial Distribution
2:36
Binomial Distribution
2:37
Multiplicative Rule Review
6:54
Multiplicative Rule Review
6:55
How Many Outcomes with k 'Successes'
10:23
Adults and Bachelor's Degree: Manual List of Outcomes
10:24
P (X=k)
19:37
Putting Together # of Outcomes with the Multiplicative Rule
19:38
Expected Value and Standard Deviation in a Binomial Distribution
25:22
Expected Value and Standard Deviation in a Binomial Distribution
25:23
Example 1: Coin Toss
33:42
Example 2: College Graduates
38:03
Example 3: Types of Blood and Probability
45:39
Example 4: Expected Number and Standard Deviation
51:11
Section 9: Sampling Distributions of Statistics
Introduction to Sampling Distributions

48m 17s

Intro
0:00
Roadmap
0:08
Roadmap
0:09
Probability Distributions vs. Sampling Distributions
0:55
Probability Distributions vs. Sampling Distributions
0:56
Same Logic
3:55
Logic of Probability Distribution
3:56
Example: Rolling Two Die
6:56
Simulating Samples
9:53
To Come Up with Probability Distributions
9:54
In Sampling Distributions
11:12
Connecting Sampling and Research Methods with Sampling Distributions
12:11
Connecting Sampling and Research Methods with Sampling Distributions
12:12
Simulating a Sampling Distribution
14:14
Experimental Design: Regular Sleep vs. Less Sleep
14:15
Logic of Sampling Distributions
23:08
Logic of Sampling Distributions
23:09
General Method of Simulating Sampling Distributions
25:38
General Method of Simulating Sampling Distributions
25:39
Questions that Remain
28:45
Questions that Remain
28:46
Example 1: Mean and Standard Error of Sampling Distribution
30:57
Example 2: What is the Best Way to Describe Sampling Distributions?
37:12
Example 3: Matching Sampling Distributions
38:21
Example 4: Mean and Standard Error of Sampling Distribution
41:51
Sampling Distribution of the Mean

1h 8m 48s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Special Case of General Method for Simulating a Sampling Distribution
1:53
Special Case of General Method for Simulating a Sampling Distribution
1:54
Computer Simulation
3:43
Using Simulations to See Principles behind Shape of SDoM
15:50
Using Simulations to See Principles behind Shape of SDoM
15:51
Conditions
17:38
Using Simulations to See Principles behind Center (Mean) of SDoM
20:15
Using Simulations to See Principles behind Center (Mean) of SDoM
20:16
Conditions: Does n Matter?
21:31
Conditions: Does Number of Simulation Matter?
24:37
Using Simulations to See Principles behind Standard Deviation of SDoM
27:13
Using Simulations to See Principles behind Standard Deviation of SDoM
27:14
Conditions: Does n Matter?
34:45
Conditions: Does Number of Simulation Matter?
36:24
Central Limit Theorem
37:13
SHAPE
38:08
CENTER
39:34
SPREAD
39:52
Comparing Population, Sample, and SDoM
43:10
Comparing Population, Sample, and SDoM
43:11
Answering the 'Questions that Remain'
48:24
What Happens When We Don't Know What the Population Looks Like?
48:25
Can We Have Sampling Distributions for Summary Statistics Other than the Mean?
49:42
How Do We Know whether a Sample is Sufficiently Unlikely?
53:36
Do We Always Have to Simulate a Large Number of Samples in Order to get a Sampling Distribution?
54:40
Example 1: Mean Batting Average
55:25
Example 2: Mean Sampling Distribution and Standard Error
59:07
Example 3: Sampling Distribution of the Mean
1:01:04
Sampling Distribution of Sample Proportions

54m 37s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Intro to Sampling Distribution of Sample Proportions (SDoSP)
0:51
Categorical Data (Examples)
0:52
Wish to Estimate Proportion of Population from Sample…
2:00
Notation
3:34
Population Proportion and Sample Proportion Notations
3:35
What's the Difference?
9:19
SDoM vs. SDoSP: Type of Data
9:20
SDoM vs. SDoSP: Shape
11:24
SDoM vs. SDoSP: Center
12:30
SDoM vs. SDoSP: Spread
15:34
Binomial Distribution vs. Sampling Distribution of Sample Proportions
19:14
Binomial Distribution vs. SDoSP: Type of Data
19:17
Binomial Distribution vs. SDoSP: Shape
21:07
Binomial Distribution vs. SDoSP: Center
21:43
Binomial Distribution vs. SDoSP: Spread
24:08
Example 1: Sampling Distribution of Sample Proportions
26:07
Example 2: Sampling Distribution of Sample Proportions
37:58
Example 3: Sampling Distribution of Sample Proportions
44:42
Example 4: Sampling Distribution of Sample Proportions
45:57
Section 10: Inferential Statistics
Introduction to Confidence Intervals

42m 53s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Inferential Statistics
0:50
Inferential Statistics
0:51
Two Problems with This Picture…
3:20
Two Problems with This Picture…
3:21
Solution: Confidence Intervals (CI)
4:59
Solution: Hypotheiss Testing (HT)
5:49
Which Parameters are Known?
6:45
Which Parameters are Known?
6:46
Confidence Interval - Goal
7:56
When We Don't Know m but know s
7:57
When We Don't Know
18:27
When We Don't Know m nor s
18:28
Example 1: Confidence Intervals
26:18
Example 2: Confidence Intervals
29:46
Example 3: Confidence Intervals
32:18
Example 4: Confidence Intervals
38:31
t Distributions

1h 2m 6s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
When to Use z vs. t?
1:07
When to Use z vs. t?
1:08
What is z and t?
3:02
z-score and t-score: Commonality
3:03
z-score and t-score: Formulas
3:34
z-score and t-score: Difference
5:22
Why not z? (Why t?)
7:24
Why not z? (Why t?)
7:25
But Don't Worry!
15:13
Gossett and t-distributions
15:14
Rules of t Distributions
17:05
t-distributions are More Normal as n Gets Bigger
17:06
t-distributions are a Family of Distributions
18:55
Degrees of Freedom (df)
20:02
Degrees of Freedom (df)
20:03
t Family of Distributions
24:07
t Family of Distributions : df = 2 , 4, and 60
24:08
df = 60
29:16
df = 2
29:59
How to Find It?
31:01
'Student's t-distribution' or 't-distribution'
31:02
Excel Example
33:06
Example 1: Which Distribution Do You Use? Z or t?
45:26
Example 2: Friends on Facebook
47:41
Example 3: t Distributions
52:15
Example 4: t Distributions , confidence interval, and mean
55:59
Introduction to Hypothesis Testing

1h 6m 33s

Intro
0:00
Roadmap
0:06
Roadmap
0:07
Issues to Overcome in Inferential Statistics
1:35
Issues to Overcome in Inferential Statistics
1:36
What Happens When We Don't Know What the Population Looks Like?
2:57
How Do We Know whether a sample is Sufficiently Unlikely
3:43
Hypothesizing a Population
6:44
Hypothesizing a Population
6:45
Null Hypothesis
8:07
Alternative Hypothesis
8:56
Hypotheses
11:58
Hypotheses
11:59
Errors in Hypothesis Testing
14:22
Errors in Hypothesis Testing
14:23
Steps of Hypothesis Testing
21:15
Steps of Hypothesis Testing
21:16
Single Sample HT ( When Sigma Available)
26:08
Example: Average Facebook Friends
26:09
Step1
27:08
Step 2
27:58
Step 3
28:17
Step 4
32:18
Single Sample HT (When Sigma Not Available)
36:33
Example: Average Facebook Friends
36:34
Step1: Hypothesis Testing
36:58
Step 2: Significance Level
37:25
Step 3: Decision Stage
37:40
Step 4: Sample
41:36
Sigma and p-value
45:04
Sigma and p-value
45:05
On tailed vs. Two Tailed Hypotheses
45:51
Example 1: Hypothesis Testing
48:37
Example 2: Heights of Women in the US
57:43
Example 3: Select the Best Way to Complete This Sentence
1:03:23
Confidence Intervals for the Difference of Two Independent Means

55m 14s

Intro
0:00
Roadmap
0:14
Roadmap
0:15
One Mean vs. Two Means
1:17
One Mean vs. Two Means
1:18
Notation
2:41
A Sample! A Set!
2:42
Mean of X, Mean of Y, and Difference of Two Means
3:56
SE of X
4:34
SE of Y
6:28
Sampling Distribution of the Difference between Two Means (SDoD)
7:48
Sampling Distribution of the Difference between Two Means (SDoD)
7:49
Rules of the SDoD (similar to CLT!)
15:00
Mean for the SDoD Null Hypothesis
15:01
Standard Error
17:39
When can We Construct a CI for the Difference between Two Means?
21:28
Three Conditions
21:29
Finding CI
23:56
One Mean CI
23:57
Two Means CI
25:45
Finding t
29:16
Finding t
29:17
Interpreting CI
30:25
Interpreting CI
30:26
Better Estimate of s (s pool)
34:15
Better Estimate of s (s pool)
34:16
Example 1: Confidence Intervals
42:32
Example 2: SE of the Difference
52:36
Hypothesis Testing for the Difference of Two Independent Means

50m

Intro
0:00
Roadmap
0:06
Roadmap
0:07
The Goal of Hypothesis Testing
0:56
One Sample and Two Samples
0:57
Sampling Distribution of the Difference between Two Means (SDoD)
3:42
Sampling Distribution of the Difference between Two Means (SDoD)
3:43
Rules of the SDoD (Similar to CLT!)
6:46
Shape
6:47
Mean for the Null Hypothesis
7:26
Standard Error for Independent Samples (When Variance is Homogenous)
8:18
Standard Error for Independent Samples (When Variance is not Homogenous)
9:25
Same Conditions for HT as for CI
10:08
Three Conditions
10:09
Steps of Hypothesis Testing
11:04
Steps of Hypothesis Testing
11:05
Formulas that Go with Steps of Hypothesis Testing
13:21
Step 1
13:25
Step 2
14:18
Step 3
15:00
Step 4
16:57
Example 1: Hypothesis Testing for the Difference of Two Independent Means
18:47
Example 2: Hypothesis Testing for the Difference of Two Independent Means
33:55
Example 3: Hypothesis Testing for the Difference of Two Independent Means
44:22
Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means

1h 14m 11s

Intro
0:00
Roadmap
0:09
Roadmap
0:10
The Goal of Hypothesis Testing
1:27
One Sample and Two Samples
1:28
Independent Samples vs. Paired Samples
3:16
Independent Samples vs. Paired Samples
3:17
Which is Which?
5:20
Independent SAMPLES vs. Independent VARIABLES
7:43
independent SAMPLES vs. Independent VARIABLES
7:44
T-tests Always…
10:48
T-tests Always…
10:49
Notation for Paired Samples
12:59
Notation for Paired Samples
13:00
Steps of Hypothesis Testing for Paired Samples
16:13
Steps of Hypothesis Testing for Paired Samples
16:14
Rules of the SDoD (Adding on Paired Samples)
18:03
Shape
18:04
Mean for the Null Hypothesis
18:31
Standard Error for Independent Samples (When Variance is Homogenous)
19:25
Standard Error for Paired Samples
20:39
Formulas that go with Steps of Hypothesis Testing
22:59
Formulas that go with Steps of Hypothesis Testing
23:00
Confidence Intervals for Paired Samples
30:32
Confidence Intervals for Paired Samples
30:33
Example 1: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
32:28
Example 2: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
44:02
Example 3: Confidence Intervals & Hypothesis Testing for the Difference of Two Paired Means
52:23
Type I and Type II Errors

31m 27s

Intro
0:00
Roadmap
0:18
Roadmap
0:19
Errors and Relationship to HT and the Sample Statistic?
1:11
Errors and Relationship to HT and the Sample Statistic?
1:12
Instead of a Box…Distributions!
7:00
One Sample t-test: Friends on Facebook
7:01
Two Sample t-test: Friends on Facebook
13:46
Usually, Lots of Overlap between Null and Alternative Distributions
16:59
Overlap between Null and Alternative Distributions
17:00
How Distributions and 'Box' Fit Together
22:45
How Distributions and 'Box' Fit Together
22:46
Example 1: Types of Errors
25:54
Example 2: Types of Errors
27:30
Example 3: What is the Danger of the Type I Error?
29:38
Effect Size & Power

44m 41s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Distance between Distributions: Sample t
0:49
Distance between Distributions: Sample t
0:50
Problem with Distance in Terms of Standard Error
2:56
Problem with Distance in Terms of Standard Error
2:57
Test Statistic (t) vs. Effect Size (d or g)
4:38
Test Statistic (t) vs. Effect Size (d or g)
4:39
Rules of Effect Size
6:09
Rules of Effect Size
6:10
Why Do We Need Effect Size?
8:21
Tells You the Practical Significance
8:22
HT can be Deceiving…
10:25
Important Note
10:42
What is Power?
11:20
What is Power?
11:21
Why Do We Need Power?
14:19
Conditional Probability and Power
14:20
Power is:
16:27
Can We Calculate Power?
19:00
Can We Calculate Power?
19:01
How Does Alpha Affect Power?
20:36
How Does Alpha Affect Power?
20:37
How Does Effect Size Affect Power?
25:38
How Does Effect Size Affect Power?
25:39
How Does Variability and Sample Size Affect Power?
27:56
How Does Variability and Sample Size Affect Power?
27:57
How Do We Increase Power?
32:47
Increasing Power
32:48
Example 1: Effect Size & Power
35:40
Example 2: Effect Size & Power
37:38
Example 3: Effect Size & Power
40:55
Section 11: Analysis of Variance
F-distributions

24m 46s

Intro
0:00
Roadmap
0:04
Roadmap
0:05
Z- & T-statistic and Their Distribution
0:34
Z- & T-statistic and Their Distribution
0:35
F-statistic
4:55
The F Ration ( the Variance Ratio)
4:56
F-distribution
12:29
F-distribution
12:30
s and p-value
15:00
s and p-value
15:01
Example 1: Why Does F-distribution Stop At 0 But Go On Until Infinity?
18:33
Example 2: F-distributions
19:29
Example 3: F-distributions and Heights
21:29
ANOVA with Independent Samples

1h 9m 25s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
The Limitations of t-tests
1:12
The Limitations of t-tests
1:13
Two Major Limitations of Many t-tests
3:26
Two Major Limitations of Many t-tests
3:27
Ronald Fisher's Solution… F-test! New Null Hypothesis
4:43
Ronald Fisher's Solution… F-test! New Null Hypothesis (Omnibus Test - One Test to Rule Them All!)
4:44
Analysis of Variance (ANoVA) Notation
7:47
Analysis of Variance (ANoVA) Notation
7:48
Partitioning (Analyzing) Variance
9:58
Total Variance
9:59
Within-group Variation
14:00
Between-group Variation
16:22
Time out: Review Variance & SS
17:05
Time out: Review Variance & SS
17:06
F-statistic
19:22
The F Ratio (the Variance Ratio)
19:23
S²bet = SSbet / dfbet
22:13
What is This?
22:14
How Many Means?
23:20
So What is the dfbet?
23:38
So What is SSbet?
24:15
S²w = SSw / dfw
26:05
What is This?
26:06
How Many Means?
27:20
So What is the dfw?
27:36
So What is SSw?
28:18
Chart of Independent Samples ANOVA
29:25
Chart of Independent Samples ANOVA
29:26
Example 1: Who Uploads More Photos: Unknown Ethnicity, Latino, Asian, Black, or White Facebook Users?
35:52
Hypotheses
35:53
Significance Level
39:40
Decision Stage
40:05
Calculate Samples' Statistic and p-Value
44:10
Reject or Fail to Reject H0
55:54
Example 2: ANOVA with Independent Samples
58:21
Repeated Measures ANOVA

1h 15m 13s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
The Limitations of t-tests
0:36
Who Uploads more Pictures and Which Photo-Type is Most Frequently Used on Facebook?
0:37
ANOVA (F-test) to the Rescue!
5:49
Omnibus Hypothesis
5:50
Analyze Variance
7:27
Independent Samples vs. Repeated Measures
9:12
Same Start
9:13
Independent Samples ANOVA
10:43
Repeated Measures ANOVA
12:00
Independent Samples ANOVA
16:00
Same Start: All the Variance Around Grand Mean
16:01
Independent Samples
16:23
Repeated Measures ANOVA
18:18
Same Start: All the Variance Around Grand Mean
18:19
Repeated Measures
18:33
Repeated Measures F-statistic
21:22
The F Ratio (The Variance Ratio)
21:23
S²bet = SSbet / dfbet
23:07
What is This?
23:08
How Many Means?
23:39
So What is the dfbet?
23:54
So What is SSbet?
24:32
S² resid = SS resid / df resid
25:46
What is This?
25:47
So What is SS resid?
26:44
So What is the df resid?
27:36
SS subj and df subj
28:11
What is This?
28:12
How Many Subject Means?
29:43
So What is df subj?
30:01
So What is SS subj?
30:09
SS total and df total
31:42
What is This?
31:43
What is the Total Number of Data Points?
32:02
So What is df total?
32:34
so What is SS total?
32:47
Chart of Repeated Measures ANOVA
33:19
Chart of Repeated Measures ANOVA: F and Between-samples Variability
33:20
Chart of Repeated Measures ANOVA: Total Variability, Within-subject (case) Variability, Residual Variability
35:50
Example 1: Which is More Prevalent on Facebook: Tagged, Uploaded, Mobile, or Profile Photos?
40:25
Hypotheses
40:26
Significance Level
41:46
Decision Stage
42:09
Calculate Samples' Statistic and p-Value
46:18
Reject or Fail to Reject H0
57:55
Example 2: Repeated Measures ANOVA
58:57
Example 3: What's the Problem with a Bunch of Tiny t-tests?
1:13:59
Section 12: Chi-square Test
Chi-Square Goodness-of-Fit Test

58m 23s

Intro
0:00
Roadmap
0:05
Roadmap
0:06
Where Does the Chi-Square Test Belong?
0:50
Where Does the Chi-Square Test Belong?
0:51
A New Twist on HT: Goodness-of-Fit
7:23
HT in General
7:24
Goodness-of-Fit HT
8:26
Hypotheses about Proportions
12:17
Null Hypothesis
12:18
Alternative Hypothesis
13:23
Example
14:38
Chi-Square Statistic
17:52
Chi-Square Statistic
17:53
Chi-Square Distributions
24:31
Chi-Square Distributions
24:32
Conditions for Chi-Square
28:58
Condition 1
28:59
Condition 2
30:20
Condition 3
30:32
Condition 4
31:47
Example 1: Chi-Square Goodness-of-Fit Test
32:23
Example 2: Chi-Square Goodness-of-Fit Test
44:34
Example 3: Which of These Statements Describe Properties of the Chi-Square Goodness-of-Fit Test?
56:06
Chi-Square Test of Homogeneity

51m 36s

Intro
0:00
Roadmap
0:09
Roadmap
0:10
Goodness-of-Fit vs. Homogeneity
1:13
Goodness-of-Fit HT
1:14
Homogeneity
2:00
Analogy
2:38
Hypotheses About Proportions
5:00
Null Hypothesis
5:01
Alternative Hypothesis
6:11
Example
6:33
Chi-Square Statistic
10:12
Same as Goodness-of-Fit Test
10:13
Set Up Data
12:28
Setting Up Data Example
12:29
Expected Frequency
16:53
Expected Frequency
16:54
Chi-Square Distributions & df
19:26
Chi-Square Distributions & df
19:27
Conditions for Test of Homogeneity
20:54
Condition 1
20:55
Condition 2
21:39
Condition 3
22:05
Condition 4
22:23
Example 1: Chi-Square Test of Homogeneity
22:52
Example 2: Chi-Square Test of Homogeneity
32:10
Section 13: Overview of Statistics
Overview of Statistics

18m 11s

Intro
0:00
Roadmap
0:07
Roadmap
0:08
The Statistical Tests (HT) We've Covered
0:28
The Statistical Tests (HT) We've Covered
0:29
Organizing the Tests We've Covered…
1:08
One Sample: Continuous DV and Categorical DV
1:09
Two Samples: Continuous DV and Categorical DV
5:41
More Than Two Samples: Continuous DV and Categorical DV
8:21
The Following Data: OK Cupid
10:10
The Following Data: OK Cupid
10:11
Example 1: Weird-MySpace-Angle Profile Photo
10:38
Example 2: Geniuses
12:30
Example 3: Promiscuous iPhone Users
13:37
Example 4: Women, Aging, and Messaging
16:07
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Statistics
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (1)

0 answers

Post by Olga Tkachenko on May 10, 2023

very helpful thank you, couldn't do stats without you~

Overview of Statistics

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Roadmap 0:07
    • Roadmap
  • The Statistical Tests (HT) We've Covered 0:28
    • The Statistical Tests (HT) We've Covered
  • Organizing the Tests We've Covered… 1:08
    • One Sample: Continuous DV and Categorical DV
    • Two Samples: Continuous DV and Categorical DV
    • More Than Two Samples: Continuous DV and Categorical DV
  • The Following Data: OK Cupid 10:10
    • The Following Data: OK Cupid
  • Example 1: Weird-MySpace-Angle Profile Photo 10:38
  • Example 2: Geniuses 12:30
  • Example 3: Promiscuous iPhone Users 13:37
  • Example 4: Women, Aging, and Messaging 16:07

Transcription: Overview of Statistics

Hi, welcome to educator.com.0000

Today we are going to overview all the statistical tests we covered so far.0002

So this is the last lesson in this series.0008

We are first going to list all the statistical tests that we covered.0011

In particular we are going to cover the hypothesis test.0016

We are going to organized them into a chart so that you can tell which test was performed by looking at a set of results.0020

So here is a giant list of hypothesis test that we covered so far.0031

Other one sample z-test, the one sample t-test, independent samples T paired samples T one-way ANOVA0036

also called the independent samples ANOVA, repeated measures ANOVA chi-square goodness of fit chi-squared test of homogeneity.0044

In more advance statistics courses, you may undercover also cover hypothesis testing with regression.0055

It does exist however we have not covered it in the set of lesson.0062

So the question is how do we know which of these tests that we should perform when we see a set of data0069

or how you look at a set of results and figure out which is the test that they did in order to come up to this result.0076

It actually helped to organize all of this different type in this table right here so there is a couple of dimension.0084

One dimension is how many samples you have, so one sample test, 2 sample tests and more than two sample test.0093

Now these hypothesis tests are all similar and that they all require at least one sample and because of that0102

they might also be called having a categorical independent variable so that is what they all have in common.0113

But they have different levels of the independent variable.0121

So this only has one level that has two levels and this has more than two levels.0125

But also we need to know what is the measurement what is the dependent variable that they are interested in.0132

There might be categorical dependent variables such as are they satisfied or unsatisfied.0139

Did they pick red blue or green or there might be continuous dependent variables.0145

How much did they improve on a test how fast were they going how many inches did they grow?0153

Different DVs like that had a numerical value were we can find the mean as well as the variance and standard deviation.0163

When we have categorical DVs such as yes and no where red blue and green we cannot find the meaning of those kind of value.0172

So let us start organizing our test.0183

When we think about one sample test there a couple of one sample tests we have talked about already.0186

Some of them literary have the word one sample in their title such as the one sample Z test and the one simple t-test.0191

The one sample Z -test and one simple t-test obviously use the mean as well as standard error which is0199

calculated by tabulating standard deviation of the sample so that would fall into the continuous dependent variable box right here.0207

So there is the one sample Z as well as the one sample T.0218

How you know when to perform the one sample z-test versus the one simple t-test well you know how to do that if you know Sigma.0227

So if sigma is known the actual population standard deviation then you go ahead and use the one sample Z- test.0238

If sigma is unknown a.k.a. you have to use S instead then use the one sample t-test and that is because the0247

T is more variable and it is much more like the normal distribution as N your sample size becomes greater and greater.0267

How about the categorical DV which is the one sample tests that we could put in here, well the categorical0278

DV that we have looked at are all called chi-squared test.0288

So there is a chi-squared test which might be written as chi-square or chi-squared there is a chi-squared test0292

that only uses one sample and compares it to a population but here they take that one sample and look at0305

the samples proportion and see if that matches the population’s proportion.0313

That test is called the goodness of fit test because that goodness of fit is looking at how the sample fit with the population, goodness of fit.0319

So, we have already tick-tuck three tests.0330

Now let us talk about two sample test, when there is two examples and we often want to look at whether0338

those samples are similar in that, the new of one minus the new other equals zero or we want to look at0349

whether they are different in that the means of these populations do not equal each other .0358

Those tests are called t-test.0365

Right so the two sample t-test and obviously t-tests require calculating a T which requires mean standard error standard deviation so does t-test belong in here.0370

So the first t-test we learned about where the independent samples t-test, as well as the paired samples t-test.0384

This is both t-tests that take into account 2 sample and they have a continuous dependent variable.0402

How do we know which one to use well you has to check for whether the samples are actually independent?0414

If the samples are independent use the independent samples t-test sort of a no-brainer.0421

If the samples are linked in some way then use the paired samples so with independent samples use the0426

independent samples t-test with link samples use the paired samples t-test.0435

Linked or dependent samples.0442

Now what about when you have a categorical DV and you have more than one sample you can no longer0446

use the chi-square goodness of fit test instead you have to use the chi-square test of homogeneity .0453

This test whether 2 population are similar to each other in terms of their proportion or not just like the t-test0461

look at whether 2 sample are similar to each other in terms of their means or not and so in that way these tests all have that in common.0480

What they have different from each other that's different from each other is that this chi-square use categorical DV and the t-test use continuous DV.0491

So what about if we have more than one sample.0501

Well actually if we had more than one sample and we have a categorical DV we can continue to use the chi0504

square test of homogeneity because here we can use it for two sample 3 sample whatever however many0510

samples you like as long as it is not one so we could just say chi-square tests of homogeneity, and life is simple.0517

However if you have a continuous DV now you can use t-test anymore because T-test only compare0530

two distribution now we need to compare multiple distribution how do we do that.0538

We use the F test also called ANOVA analysis of variance.0544

So there are two kinds of analysis of variance test that you learned.0549

One was the independent samples ANOVA and the other was the repeated measures ANOVA.0553

How do you know which one to use, well it is just like this separation right here with independent samples0568

use the independent samples ANOVA with link samples or dependent samples you use the repeated measures ANOVA.0581

So that is how we know which test to do so we could look at a set of data look at whether it had0589

continuous DV or not look at whether has to samples one sample more than one sample and we could0597

follow this chart to figure out which tests should be performed and which does we can perform.0603

So now let us practice.0609

The following data are from OkCupid, an Internet dating website that does a lot of cool things with the data.0613

So you could check out the blog at blog.okcupid.com and many of these figures are adapted from that website.0621

The following data may be offensive to some of you because some of the data to mention sex and some of the data mention cleavage.0630

Example 1 so here is a statistical conclusion and we need to figure out what statistical tests we should do.0637

The statistical conclusion is this.0647

The weird MySpace angle profile photo the one it looks like this, that results in more messages than other0651

photo contacts, so here are the different photo contacts, things like my space shot in bed, outdoors travel0659

with friends and the dependent variable is the new contacts monthly.0666

How many new contacts they have per month so these are my two variables, photo contacts as well as number of contacts monthly.0672

My number of contacts is my dependent variable and my photo contacts this happens to be my multiple groups, my different samples right.0688

So I have a sample of people who has this as their profile shot this is their profile shot is that their profile shot.0704

So these are my sample here and I have eight samples with continuous DV so which statistical tests should be performed?0711

Well it should be an independent samples ANOVA because we have more than two group, 2 groups and are devious continuous.0722

So we can analyze the variance between the groups over as a ratio of the variance within the groups.0734

So example 2, use the statistical conclusion straight and bisexual men are more likely to believe they are geniuses than gay man.0747

What are the variables and which statistical tests should be performed?0760

So they are comparing three different groups of men bisexual men gay men and straight man so that things0764

like samples already and what they are asking them is just yes or no.0773

Do you think you are a genius are you a genius , yes or no, that is a categorical variable and the we have a0778

categorical dependent variable so what statistical tests should be performed?0785

Well, three groups in a categorical dependent variable this seems like this seems to call for the chi-square test of homogeneity.0792

We want to know whether these three different samples have similar proportion or different proportion.0802

Example 3 the statistical conclusion says this.0813

Both male and female iPhone users are more promiscuous than blackberry and android users.0823

So what are the variables and which statistical tests should be performed?0829

This is actually a little bit of a trick question.0834

You can answer the best of your ability but I'll show you how to go one step beyond what we actually know, okay.0837

So one thing we could do is just compare these three groups of three groups of cell phone users so that0844

seems like three samples to me that are independent.0852

Usually people do not have more than one cell phone and this looks like the average number of sexual0855

partners at age 30 so this is the bar graph right here not a histogram which should be a frequency0862

distribution and this seems like a continuous dependent variable.0868

After all in order to compete an average you have to have a continuous variable so we have a continuous0875

DV with three groups of cell phone users.0882

The one answer that we could come up with is to say perhaps the one one-way ANOVA also called0885

independent samples ANOVA but and that would be a good answer given what we have learned so far.0895

Hopefully you will have learned enough about statistics that you can take multivariate statistics which is sort of the next level .0909

In the next level which you will learn about in when you have more than more than two independent variables.0915

Here we have independent variable of cell phone as well as the independent variable of gender and when you cross them together we get six groups.0923

Android users were male android users who are female and blackberry users or male and blackberry users who are female, iPhone male, iPhone female.0934

With six different groups now later on when you look at this factorial ANOVA, they can actually almost like doing 2 ANOVA at the same time.0946

And so this would actually technically be a factorial ANOVA but if you can answer the nova you are pretty close.0958

So example 4, older women cleavage pictures are associated with greater improvement in monthly contact them for younger women.0966

Okay so one of the ways we can look at this is looking at age and we can look at the difference between this0978

as the dependent variable and that is definitely continuous and we can look at the difference here as well and compared those 2 differences.0987

Just at age 18 and age 32 so we looked at these two groups of women that so the 18-year-old women and the 32-year-old women.0997

We look at those two groups of women and look at the DV of improvement how much improvements what kind of test would we do?1008

Well it seems as though we should do a t-test of some sort because this is a continuous variable and we1021

have 2 groups and the groups seem independent.1030

We cannot be 18 and 32 at the same time and I do not think they are following the 18-year-old until they1033

become 32 so I do not think they are linked so it seemed like an independent samples t-test.1041

But there are other ways you can look at this, you can look at this as a regression correlation you can look1046

at the regression line for women with women showing cleavage in light blue and women not showing1061

cleavage in the dark, dark blue so you can look at those two regression line so that is another way that you could go on this.1072

So that is the end for statistics on educator.com, thank you so much for watching.1083

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.