Raffi Hovasapian

Raffi Hovasapian

Math Lesson II

Slide Duration:

Table of Contents

Section 1: Classical Thermodynamics Preliminaries
The Ideal Gas Law

46m 5s

Intro
0:00
Course Overview
0:16
Thermodynamics & Classical Thermodynamics
0:17
Structure of the Course
1:30
The Ideal Gas Law
3:06
Ideal Gas Law: PV=nRT
3:07
Units of Pressure
4:51
Manipulating Units
5:52
Atmosphere : atm
8:15
Millimeter of Mercury: mm Hg
8:48
SI Unit of Volume
9:32
SI Unit of Temperature
10:32
Value of R (Gas Constant): Pv = nRT
10:51
Extensive and Intensive Variables (Properties)
15:23
Intensive Property
15:52
Extensive Property
16:30
Example: Extensive and Intensive Variables
18:20
Ideal Gas Law
19:24
Ideal Gas Law with Intensive Variables
19:25
Graphing Equations
23:51
Hold T Constant & Graph P vs. V
23:52
Hold P Constant & Graph V vs. T
31:08
Hold V Constant & Graph P vs. T
34:38
Isochores or Isometrics
37:08
More on the V vs. T Graph
39:46
More on the P vs. V Graph
42:06
Ideal Gas Law at Low Pressure & High Temperature
44:26
Ideal Gas Law at High Pressure & Low Temperature
45:16
Math Lesson 1: Partial Differentiation

46m 2s

Intro
0:00
Math Lesson 1: Partial Differentiation
0:38
Overview
0:39
Example I
3:00
Example II
6:33
Example III
9:52
Example IV
17:26
Differential & Derivative
21:44
What Does It Mean?
21:45
Total Differential (or Total Derivative)
30:16
Net Change in Pressure (P)
33:58
General Equation for Total Differential
38:12
Example 5: Total Differential
39:28
Section 2: Energy
Energy & the First Law I

1h 6m 45s

Intro
0:00
Properties of Thermodynamic State
1:38
Big Picture: 3 Properties of Thermodynamic State
1:39
Enthalpy & Free Energy
3:30
Associated Law
4:40
Energy & the First Law of Thermodynamics
7:13
System & Its Surrounding Separated by a Boundary
7:14
In Other Cases the Boundary is Less Clear
10:47
State of a System
12:37
State of a System
12:38
Change in State
14:00
Path for a Change in State
14:57
Example: State of a System
15:46
Open, Close, and Isolated System
18:26
Open System
18:27
Closed System
19:02
Isolated System
19:22
Important Questions
20:38
Important Questions
20:39
Work & Heat
22:50
Definition of Work
23:33
Properties of Work
25:34
Definition of Heat
32:16
Properties of Heat
34:49
Experiment #1
42:23
Experiment #2
47:00
More on Work & Heat
54:50
More on Work & Heat
54:51
Conventions for Heat & Work
1:00:50
Convention for Heat
1:02:40
Convention for Work
1:04:24
Schematic Representation
1:05:00
Energy & the First Law II

1h 6m 33s

Intro
0:00
The First Law of Thermodynamics
0:53
The First Law of Thermodynamics
0:54
Example 1: What is the Change in Energy of the System & Surroundings?
8:53
Energy and The First Law II, cont.
11:55
The Energy of a System Changes in Two Ways
11:56
Systems Possess Energy, Not Heat or Work
12:45
Scenario 1
16:00
Scenario 2
16:46
State Property, Path Properties, and Path Functions
18:10
Pressure-Volume Work
22:36
When a System Changes
22:37
Gas Expands
24:06
Gas is Compressed
25:13
Pressure Volume Diagram: Analyzing Expansion
27:17
What if We do the Same Expansion in Two Stages?
35:22
Multistage Expansion
43:58
General Expression for the Pressure-Volume Work
46:59
Upper Limit of Isothermal Expansion
50:00
Expression for the Work Done in an Isothermal Expansion
52:45
Example 2: Find an Expression for the Maximum Work Done by an Ideal Gas upon Isothermal Expansion
56:18
Example 3: Calculate the External Pressure and Work Done
58:50
Energy & the First Law III

1h 2m 17s

Intro
0:00
Compression
0:20
Compression Overview
0:34
Single-stage compression vs. 2-stage Compression
2:16
Multi-stage Compression
8:40
Example I: Compression
14:47
Example 1: Single-stage Compression
14:47
Example 1: 2-stage Compression
20:07
Example 1: Absolute Minimum
26:37
More on Compression
32:55
Isothermal Expansion & Compression
32:56
External & Internal Pressure of the System
35:18
Reversible & Irreversible Processes
37:32
Process 1: Overview
38:57
Process 2: Overview
39:36
Process 1: Analysis
40:42
Process 2: Analysis
45:29
Reversible Process
50:03
Isothermal Expansion and Compression
54:31
Example II: Reversible Isothermal Compression of a Van der Waals Gas
58:10
Example 2: Reversible Isothermal Compression of a Van der Waals Gas
58:11
Changes in Energy & State: Constant Volume

1h 4m 39s

Intro
0:00
Recall
0:37
State Function & Path Function
0:38
First Law
2:11
Exact & Inexact Differential
2:12
Where Does (∆U = Q - W) or dU = dQ - dU Come from?
8:54
Cyclic Integrals of Path and State Functions
8:55
Our Empirical Experience of the First Law
12:31
∆U = Q - W
18:42
Relations between Changes in Properties and Energy
22:24
Relations between Changes in Properties and Energy
22:25
Rate of Change of Energy per Unit Change in Temperature
29:54
Rate of Change of Energy per Unit Change in Volume at Constant Temperature
32:39
Total Differential Equation
34:38
Constant Volume
41:08
If Volume Remains Constant, then dV = 0
41:09
Constant Volume Heat Capacity
45:22
Constant Volume Integrated
48:14
Increase & Decrease in Energy of the System
54:19
Example 1: ∆U and Qv
57:43
Important Equations
1:02:06
Joule's Experiment

16m 50s

Intro
0:00
Joule's Experiment
0:09
Joule's Experiment
1:20
Interpretation of the Result
4:42
The Gas Expands Against No External Pressure
4:43
Temperature of the Surrounding Does Not Change
6:20
System & Surrounding
7:04
Joule's Law
10:44
More on Joule's Experiment
11:08
Later Experiment
12:38
Dealing with the 2nd Law & Its Mathematical Consequences
13:52
Changes in Energy & State: Constant Pressure

43m 40s

Intro
0:00
Changes in Energy & State: Constant Pressure
0:20
Integrating with Constant Pressure
0:35
Defining the New State Function
6:24
Heat & Enthalpy of the System at Constant Pressure
8:54
Finding ∆U
12:10
dH
15:28
Constant Pressure Heat Capacity
18:08
Important Equations
25:44
Important Equations
25:45
Important Equations at Constant Pressure
27:32
Example I: Change in Enthalpy (∆H)
28:53
Example II: Change in Internal Energy (∆U)
34:19
The Relationship Between Cp & Cv

32m 23s

Intro
0:00
The Relationship Between Cp & Cv
0:21
For a Constant Volume Process No Work is Done
0:22
For a Constant Pressure Process ∆V ≠ 0, so Work is Done
1:16
The Relationship Between Cp & Cv: For an Ideal Gas
3:26
The Relationship Between Cp & Cv: In Terms of Molar heat Capacities
5:44
Heat Capacity Can Have an Infinite # of Values
7:14
The Relationship Between Cp & Cv
11:20
When Cp is Greater than Cv
17:13
2nd Term
18:10
1st Term
19:20
Constant P Process: 3 Parts
22:36
Part 1
23:45
Part 2
24:10
Part 3
24:46
Define : γ = (Cp/Cv)
28:06
For Gases
28:36
For Liquids
29:04
For an Ideal Gas
30:46
The Joule Thompson Experiment

39m 15s

Intro
0:00
General Equations
0:13
Recall
0:14
How Does Enthalpy of a System Change Upon a Unit Change in Pressure?
2:58
For Liquids & Solids
12:11
For Ideal Gases
14:08
For Real Gases
16:58
The Joule Thompson Experiment
18:37
The Joule Thompson Experiment Setup
18:38
The Flow in 2 Stages
22:54
Work Equation for the Joule Thompson Experiment
24:14
Insulated Pipe
26:33
Joule-Thompson Coefficient
29:50
Changing Temperature & Pressure in Such a Way that Enthalpy Remains Constant
31:44
Joule Thompson Inversion Temperature
36:26
Positive & Negative Joule-Thompson Coefficient
36:27
Joule Thompson Inversion Temperature
37:22
Inversion Temperature of Hydrogen Gas
37:59
Adiabatic Changes of State

35m 52s

Intro
0:00
Adiabatic Changes of State
0:10
Adiabatic Changes of State
0:18
Work & Energy in an Adiabatic Process
3:44
Pressure-Volume Work
7:43
Adiabatic Changes for an Ideal Gas
9:23
Adiabatic Changes for an Ideal Gas
9:24
Equation for a Fixed Change in Volume
11:20
Maximum & Minimum Values of Temperature
14:20
Adiabatic Path
18:08
Adiabatic Path Diagram
18:09
Reversible Adiabatic Expansion
21:54
Reversible Adiabatic Compression
22:34
Fundamental Relationship Equation for an Ideal Gas Under Adiabatic Expansion
25:00
More on the Equation
28:20
Important Equations
32:16
Important Adiabatic Equation
32:17
Reversible Adiabatic Change of State Equation
33:02
Section 3: Energy Example Problems
1st Law Example Problems I

42m 40s

Intro
0:00
Fundamental Equations
0:56
Work
2:40
Energy (1st Law)
3:10
Definition of Enthalpy
3:44
Heat capacity Definitions
4:06
The Mathematics
6:35
Fundamental Concepts
8:13
Isothermal
8:20
Adiabatic
8:54
Isobaric
9:25
Isometric
9:48
Ideal Gases
10:14
Example I
12:08
Example I: Conventions
12:44
Example I: Part A
15:30
Example I: Part B
18:24
Example I: Part C
19:53
Example II: What is the Heat Capacity of the System?
21:49
Example III: Find Q, W, ∆U & ∆H for this Change of State
24:15
Example IV: Find Q, W, ∆U & ∆H
31:37
Example V: Find Q, W, ∆U & ∆H
38:20
1st Law Example Problems II

1h 23s

Intro
0:00
Example I
0:11
Example I: Finding ∆U
1:49
Example I: Finding W
6:22
Example I: Finding Q
11:23
Example I: Finding ∆H
16:09
Example I: Summary
17:07
Example II
21:16
Example II: Finding W
22:42
Example II: Finding ∆H
27:48
Example II: Finding Q
30:58
Example II: Finding ∆U
31:30
Example III
33:33
Example III: Finding ∆U, Q & W
33:34
Example III: Finding ∆H
38:07
Example IV
41:50
Example IV: Finding ∆U
41:51
Example IV: Finding ∆H
45:42
Example V
49:31
Example V: Finding W
49:32
Example V: Finding ∆U
55:26
Example V: Finding Q
56:26
Example V: Finding ∆H
56:55
1st Law Example Problems III

44m 34s

Intro
0:00
Example I
0:15
Example I: Finding the Final Temperature
3:40
Example I: Finding Q
8:04
Example I: Finding ∆U
8:25
Example I: Finding W
9:08
Example I: Finding ∆H
9:51
Example II
11:27
Example II: Finding the Final Temperature
11:28
Example II: Finding ∆U
21:25
Example II: Finding W & Q
22:14
Example II: Finding ∆H
23:03
Example III
24:38
Example III: Finding the Final Temperature
24:39
Example III: Finding W, ∆U, and Q
27:43
Example III: Finding ∆H
28:04
Example IV
29:23
Example IV: Finding ∆U, W, and Q
25:36
Example IV: Finding ∆H
31:33
Example V
32:24
Example V: Finding the Final Temperature
33:32
Example V: Finding ∆U
39:31
Example V: Finding W
40:17
Example V: First Way of Finding ∆H
41:10
Example V: Second Way of Finding ∆H
42:10
Thermochemistry Example Problems

59m 7s

Intro
0:00
Example I: Find ∆H° for the Following Reaction
0:42
Example II: Calculate the ∆U° for the Reaction in Example I
5:33
Example III: Calculate the Heat of Formation of NH₃ at 298 K
14:23
Example IV
32:15
Part A: Calculate the Heat of Vaporization of Water at 25°C
33:49
Part B: Calculate the Work Done in Vaporizing 2 Mols of Water at 25°C Under a Constant Pressure of 1 atm
35:26
Part C: Find ∆U for the Vaporization of Water at 25°C
41:00
Part D: Find the Enthalpy of Vaporization of Water at 100°C
43:12
Example V
49:24
Part A: Constant Temperature & Increasing Pressure
50:25
Part B: Increasing temperature & Constant Pressure
56:20
Section 4: Entropy
Entropy

49m 16s

Intro
0:00
Entropy, Part 1
0:16
Coefficient of Thermal Expansion (Isobaric)
0:38
Coefficient of Compressibility (Isothermal)
1:25
Relative Increase & Relative Decrease
2:16
More on α
4:40
More on κ
8:38
Entropy, Part 2
11:04
Definition of Entropy
12:54
Differential Change in Entropy & the Reversible Path
20:08
State Property of the System
28:26
Entropy Changes Under Isothermal Conditions
35:00
Recall: Heating Curve
41:05
Some Phase Changes Take Place Under Constant Pressure
44:07
Example I: Finding ∆S for a Phase Change
46:05
Math Lesson II

33m 59s

Intro
0:00
Math Lesson II
0:46
Let F(x,y) = x²y³
0:47
Total Differential
3:34
Total Differential Expression
6:06
Example 1
9:24
More on Math Expression
13:26
Exact Total Differential Expression
13:27
Exact Differentials
19:50
Inexact Differentials
20:20
The Cyclic Rule
21:06
The Cyclic Rule
21:07
Example 2
27:58
Entropy As a Function of Temperature & Volume

54m 37s

Intro
0:00
Entropy As a Function of Temperature & Volume
0:14
Fundamental Equation of Thermodynamics
1:16
Things to Notice
9:10
Entropy As a Function of Temperature & Volume
14:47
Temperature-dependence of Entropy
24:00
Example I
26:19
Entropy As a Function of Temperature & Volume, Cont.
31:55
Volume-dependence of Entropy at Constant Temperature
31:56
Differentiate with Respect to Temperature, Holding Volume Constant
36:16
Recall the Cyclic Rule
45:15
Summary & Recap
46:47
Fundamental Equation of Thermodynamics
46:48
For Entropy as a Function of Temperature & Volume
47:18
The Volume-dependence of Entropy for Liquids & Solids
52:52
Entropy as a Function of Temperature & Pressure

31m 18s

Intro
0:00
Entropy as a Function of Temperature & Pressure
0:17
Entropy as a Function of Temperature & Pressure
0:18
Rewrite the Total Differential
5:54
Temperature-dependence
7:08
Pressure-dependence
9:04
Differentiate with Respect to Pressure & Holding Temperature Constant
9:54
Differentiate with Respect to Temperature & Holding Pressure Constant
11:28
Pressure-Dependence of Entropy for Liquids & Solids
18:45
Pressure-Dependence of Entropy for Liquids & Solids
18:46
Example I: ∆S of Transformation
26:20
Summary of Entropy So Far

23m 6s

Intro
0:00
Summary of Entropy So Far
0:43
Defining dS
1:04
Fundamental Equation of Thermodynamics
3:51
Temperature & Volume
6:04
Temperature & Pressure
9:10
Two Important Equations for How Entropy Behaves
13:38
State of a System & Heat Capacity
15:34
Temperature-dependence of Entropy
19:49
Entropy Changes for an Ideal Gas

25m 42s

Intro
0:00
Entropy Changes for an Ideal Gas
1:10
General Equation
1:22
The Fundamental Theorem of Thermodynamics
2:37
Recall the Basic Total Differential Expression for S = S (T,V)
5:36
For a Finite Change in State
7:58
If Cv is Constant Over the Particular Temperature Range
9:05
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:35
Change in Entropy of an Ideal Gas as a Function of Temperature & Pressure
11:36
Recall the Basic Total Differential expression for S = S (T, P)
15:13
For a Finite Change
18:06
Example 1: Calculate the ∆S of Transformation
22:02
Section 5: Entropy Example Problems
Entropy Example Problems I

43m 39s

Intro
0:00
Entropy Example Problems I
0:24
Fundamental Equation of Thermodynamics
1:10
Entropy as a Function of Temperature & Volume
2:04
Entropy as a Function of Temperature & Pressure
2:59
Entropy For Phase Changes
4:47
Entropy For an Ideal Gas
6:14
Third Law Entropies
8:25
Statement of the Third Law
9:17
Entropy of the Liquid State of a Substance Above Its Melting Point
10:23
Entropy For the Gas Above Its Boiling Temperature
13:02
Entropy Changes in Chemical Reactions
15:26
Entropy Change at a Temperature Other than 25°C
16:32
Example I
19:31
Part A: Calculate ∆S for the Transformation Under Constant Volume
20:34
Part B: Calculate ∆S for the Transformation Under Constant Pressure
25:04
Example II: Calculate ∆S fir the Transformation Under Isobaric Conditions
27:53
Example III
30:14
Part A: Calculate ∆S if 1 Mol of Aluminum is taken from 25°C to 255°C
31:14
Part B: If S°₂₉₈ = 28.4 J/mol-K, Calculate S° for Aluminum at 498 K
33:23
Example IV: Calculate Entropy Change of Vaporization for CCl₄
34:19
Example V
35:41
Part A: Calculate ∆S of Transformation
37:36
Part B: Calculate ∆S of Transformation
39:10
Entropy Example Problems II

56m 44s

Intro
0:00
Example I
0:09
Example I: Calculate ∆U
1:28
Example I: Calculate Q
3:29
Example I: Calculate Cp
4:54
Example I: Calculate ∆S
6:14
Example II
7:13
Example II: Calculate W
8:14
Example II: Calculate ∆U
8:56
Example II: Calculate Q
10:18
Example II: Calculate ∆H
11:00
Example II: Calculate ∆S
12:36
Example III
18:47
Example III: Calculate ∆H
19:38
Example III: Calculate Q
21:14
Example III: Calculate ∆U
21:44
Example III: Calculate W
23:59
Example III: Calculate ∆S
24:55
Example IV
27:57
Example IV: Diagram
29:32
Example IV: Calculate W
32:27
Example IV: Calculate ∆U
36:36
Example IV: Calculate Q
38:32
Example IV: Calculate ∆H
39:00
Example IV: Calculate ∆S
40:27
Example IV: Summary
43:41
Example V
48:25
Example V: Diagram
49:05
Example V: Calculate W
50:58
Example V: Calculate ∆U
53:29
Example V: Calculate Q
53:44
Example V: Calculate ∆H
54:34
Example V: Calculate ∆S
55:01
Entropy Example Problems III

57m 6s

Intro
0:00
Example I: Isothermal Expansion
0:09
Example I: Calculate W
1:19
Example I: Calculate ∆U
1:48
Example I: Calculate Q
2:06
Example I: Calculate ∆H
2:26
Example I: Calculate ∆S
3:02
Example II: Adiabatic and Reversible Expansion
6:10
Example II: Calculate Q
6:48
Example II: Basic Equation for the Reversible Adiabatic Expansion of an Ideal Gas
8:12
Example II: Finding Volume
12:40
Example II: Finding Temperature
17:58
Example II: Calculate ∆U
19:53
Example II: Calculate W
20:59
Example II: Calculate ∆H
21:42
Example II: Calculate ∆S
23:42
Example III: Calculate the Entropy of Water Vapor
25:20
Example IV: Calculate the Molar ∆S for the Transformation
34:32
Example V
44:19
Part A: Calculate the Standard Entropy of Liquid Lead at 525°C
46:17
Part B: Calculate ∆H for the Transformation of Solid Lead from 25°C to Liquid Lead at 525°C
52:23
Section 6: Entropy and Probability
Entropy & Probability I

54m 35s

Intro
0:00
Entropy & Probability
0:11
Structural Model
3:05
Recall the Fundamental Equation of Thermodynamics
9:11
Two Independent Ways of Affecting the Entropy of a System
10:05
Boltzmann Definition
12:10
Omega
16:24
Definition of Omega
16:25
Energy Distribution
19:43
The Energy Distribution
19:44
In How Many Ways can N Particles be Distributed According to the Energy Distribution
23:05
Example I: In How Many Ways can the Following Distribution be Achieved
32:51
Example II: In How Many Ways can the Following Distribution be Achieved
33:51
Example III: In How Many Ways can the Following Distribution be Achieved
34:45
Example IV: In How Many Ways can the Following Distribution be Achieved
38:50
Entropy & Probability, cont.
40:57
More on Distribution
40:58
Example I Summary
41:43
Example II Summary
42:12
Distribution that Maximizes Omega
42:26
If Omega is Large, then S is Large
44:22
Two Constraints for a System to Achieve the Highest Entropy Possible
47:07
What Happened When the Energy of a System is Increased?
49:00
Entropy & Probability II

35m 5s

Intro
0:00
Volume Distribution
0:08
Distributing 2 Balls in 3 Spaces
1:43
Distributing 2 Balls in 4 Spaces
3:44
Distributing 3 Balls in 10 Spaces
5:30
Number of Ways to Distribute P Particles over N Spaces
6:05
When N is Much Larger than the Number of Particles P
7:56
Energy Distribution
25:04
Volume Distribution
25:58
Entropy, Total Entropy, & Total Omega Equations
27:34
Entropy, Total Entropy, & Total Omega Equations
27:35
Section 7: Spontaneity, Equilibrium, and the Fundamental Equations
Spontaneity & Equilibrium I

28m 42s

Intro
0:00
Reversible & Irreversible
0:24
Reversible vs. Irreversible
0:58
Defining Equation for Equilibrium
2:11
Defining Equation for Irreversibility (Spontaneity)
3:11
TdS ≥ dQ
5:15
Transformation in an Isolated System
11:22
Transformation in an Isolated System
11:29
Transformation at Constant Temperature
14:50
Transformation at Constant Temperature
14:51
Helmholtz Free Energy
17:26
Define: A = U - TS
17:27
Spontaneous Isothermal Process & Helmholtz Energy
20:20
Pressure-volume Work
22:02
Spontaneity & Equilibrium II

34m 38s

Intro
0:00
Transformation under Constant Temperature & Pressure
0:08
Transformation under Constant Temperature & Pressure
0:36
Define: G = U + PV - TS
3:32
Gibbs Energy
5:14
What Does This Say?
6:44
Spontaneous Process & a Decrease in G
14:12
Computing ∆G
18:54
Summary of Conditions
21:32
Constraint & Condition for Spontaneity
21:36
Constraint & Condition for Equilibrium
24:54
A Few Words About the Word Spontaneous
26:24
Spontaneous Does Not Mean Fast
26:25
Putting Hydrogen & Oxygen Together in a Flask
26:59
Spontaneous Vs. Not Spontaneous
28:14
Thermodynamically Favorable
29:03
Example: Making a Process Thermodynamically Favorable
29:34
Driving Forces for Spontaneity
31:35
Equation: ∆G = ∆H - T∆S
31:36
Always Spontaneous Process
32:39
Never Spontaneous Process
33:06
A Process That is Endothermic Can Still be Spontaneous
34:00
The Fundamental Equations of Thermodynamics

30m 50s

Intro
0:00
The Fundamental Equations of Thermodynamics
0:44
Mechanical Properties of a System
0:45
Fundamental Properties of a System
1:16
Composite Properties of a System
1:44
General Condition of Equilibrium
3:16
Composite Functions & Their Differentiations
6:11
dH = TdS + VdP
7:53
dA = -SdT - PdV
9:26
dG = -SdT + VdP
10:22
Summary of Equations
12:10
Equation #1
14:33
Equation #2
15:15
Equation #3
15:58
Equation #4
16:42
Maxwell's Relations
20:20
Maxwell's Relations
20:21
Isothermal Volume-Dependence of Entropy & Isothermal Pressure-Dependence of Entropy
26:21
The General Thermodynamic Equations of State

34m 6s

Intro
0:00
The General Thermodynamic Equations of State
0:10
Equations of State for Liquids & Solids
0:52
More General Condition for Equilibrium
4:02
General Conditions: Equation that Relates P to Functions of T & V
6:20
The Second Fundamental Equation of Thermodynamics
11:10
Equation 1
17:34
Equation 2
21:58
Recall the General Expression for Cp - Cv
28:11
For the Joule-Thomson Coefficient
30:44
Joule-Thomson Inversion Temperature
32:12
Properties of the Helmholtz & Gibbs Energies

39m 18s

Intro
0:00
Properties of the Helmholtz & Gibbs Energies
0:10
Equating the Differential Coefficients
1:34
An Increase in T; a Decrease in A
3:25
An Increase in V; a Decrease in A
6:04
We Do the Same Thing for G
8:33
Increase in T; Decrease in G
10:50
Increase in P; Decrease in G
11:36
Gibbs Energy of a Pure Substance at a Constant Temperature from 1 atm to any Other Pressure.
14:12
If the Substance is a Liquid or a Solid, then Volume can be Treated as a Constant
18:57
For an Ideal Gas
22:18
Special Note
24:56
Temperature Dependence of Gibbs Energy
27:02
Temperature Dependence of Gibbs Energy #1
27:52
Temperature Dependence of Gibbs Energy #2
29:01
Temperature Dependence of Gibbs Energy #3
29:50
Temperature Dependence of Gibbs Energy #4
34:50
The Entropy of the Universe & the Surroundings

19m 40s

Intro
0:00
Entropy of the Universe & the Surroundings
0:08
Equation: ∆G = ∆H - T∆S
0:20
Conditions of Constant Temperature & Pressure
1:14
Reversible Process
3:14
Spontaneous Process & the Entropy of the Universe
5:20
Tips for Remembering Everything
12:40
Verify Using Known Spontaneous Process
14:51
Section 8: Free Energy Example Problems
Free Energy Example Problems I

54m 16s

Intro
0:00
Example I
0:11
Example I: Deriving a Function for Entropy (S)
2:06
Example I: Deriving a Function for V
5:55
Example I: Deriving a Function for H
8:06
Example I: Deriving a Function for U
12:06
Example II
15:18
Example III
21:52
Example IV
26:12
Example IV: Part A
26:55
Example IV: Part B
28:30
Example IV: Part C
30:25
Example V
33:45
Example VI
40:46
Example VII
43:43
Example VII: Part A
44:46
Example VII: Part B
50:52
Example VII: Part C
51:56
Free Energy Example Problems II

31m 17s

Intro
0:00
Example I
0:09
Example II
5:18
Example III
8:22
Example IV
12:32
Example V
17:14
Example VI
20:34
Example VI: Part A
21:04
Example VI: Part B
23:56
Example VI: Part C
27:56
Free Energy Example Problems III

45m

Intro
0:00
Example I
0:10
Example II
15:03
Example III
21:47
Example IV
28:37
Example IV: Part A
29:33
Example IV: Part B
36:09
Example IV: Part C
40:34
Three Miscellaneous Example Problems

58m 5s

Intro
0:00
Example I
0:41
Part A: Calculating ∆H
3:55
Part B: Calculating ∆S
15:13
Example II
24:39
Part A: Final Temperature of the System
26:25
Part B: Calculating ∆S
36:57
Example III
46:49
Section 9: Equation Review for Thermodynamics
Looking Back Over Everything: All the Equations in One Place

25m 20s

Intro
0:00
Work, Heat, and Energy
0:18
Definition of Work, Energy, Enthalpy, and Heat Capacities
0:23
Heat Capacities for an Ideal Gas
3:40
Path Property & State Property
3:56
Energy Differential
5:04
Enthalpy Differential
5:40
Joule's Law & Joule-Thomson Coefficient
6:23
Coefficient of Thermal Expansion & Coefficient of Compressibility
7:01
Enthalpy of a Substance at Any Other Temperature
7:29
Enthalpy of a Reaction at Any Other Temperature
8:01
Entropy
8:53
Definition of Entropy
8:54
Clausius Inequality
9:11
Entropy Changes in Isothermal Systems
9:44
The Fundamental Equation of Thermodynamics
10:12
Expressing Entropy Changes in Terms of Properties of the System
10:42
Entropy Changes in the Ideal Gas
11:22
Third Law Entropies
11:38
Entropy Changes in Chemical Reactions
14:02
Statistical Definition of Entropy
14:34
Omega for the Spatial & Energy Distribution
14:47
Spontaneity and Equilibrium
15:43
Helmholtz Energy & Gibbs Energy
15:44
Condition for Spontaneity & Equilibrium
16:24
Condition for Spontaneity with Respect to Entropy
17:58
The Fundamental Equations
18:30
Maxwell's Relations
19:04
The Thermodynamic Equations of State
20:07
Energy & Enthalpy Differentials
21:08
Joule's Law & Joule-Thomson Coefficient
21:59
Relationship Between Constant Pressure & Constant Volume Heat Capacities
23:14
One Final Equation - Just for Fun
24:04
Section 10: Quantum Mechanics Preliminaries
Complex Numbers

34m 25s

Intro
0:00
Complex Numbers
0:11
Representing Complex Numbers in the 2-Dimmensional Plane
0:56
Addition of Complex Numbers
2:35
Subtraction of Complex Numbers
3:17
Multiplication of Complex Numbers
3:47
Division of Complex Numbers
6:04
r & θ
8:04
Euler's Formula
11:00
Polar Exponential Representation of the Complex Numbers
11:22
Example I
14:25
Example II
15:21
Example III
16:58
Example IV
18:35
Example V
20:40
Example VI
21:32
Example VII
25:22
Probability & Statistics

59m 57s

Intro
0:00
Probability & Statistics
1:51
Normalization Condition
1:52
Define the Mean or Average of x
11:04
Example I: Calculate the Mean of x
14:57
Example II: Calculate the Second Moment of the Data in Example I
22:39
Define the Second Central Moment or Variance
25:26
Define the Second Central Moment or Variance
25:27
1st Term
32:16
2nd Term
32:40
3rd Term
34:07
Continuous Distributions
35:47
Continuous Distributions
35:48
Probability Density
39:30
Probability Density
39:31
Normalization Condition
46:51
Example III
50:13
Part A - Show that P(x) is Normalized
51:40
Part B - Calculate the Average Position of the Particle Along the Interval
54:31
Important Things to Remember
58:24
Schrӧdinger Equation & Operators

42m 5s

Intro
0:00
Schrӧdinger Equation & Operators
0:16
Relation Between a Photon's Momentum & Its Wavelength
0:17
Louis de Broglie: Wavelength for Matter
0:39
Schrӧdinger Equation
1:19
Definition of Ψ(x)
3:31
Quantum Mechanics
5:02
Operators
7:51
Example I
10:10
Example II
11:53
Example III
14:24
Example IV
17:35
Example V
19:59
Example VI
22:39
Operators Can Be Linear or Non Linear
27:58
Operators Can Be Linear or Non Linear
28:34
Example VII
32:47
Example VIII
36:55
Example IX
39:29
Schrӧdinger Equation as an Eigenvalue Problem

30m 26s

Intro
0:00
Schrӧdinger Equation as an Eigenvalue Problem
0:10
Operator: Multiplying the Original Function by Some Scalar
0:11
Operator, Eigenfunction, & Eigenvalue
4:42
Example: Eigenvalue Problem
8:00
Schrӧdinger Equation as an Eigenvalue Problem
9:24
Hamiltonian Operator
15:09
Quantum Mechanical Operators
16:46
Kinetic Energy Operator
19:16
Potential Energy Operator
20:02
Total Energy Operator
21:12
Classical Point of View
21:48
Linear Momentum Operator
24:02
Example I
26:01
The Plausibility of the Schrӧdinger Equation

21m 34s

Intro
0:00
The Plausibility of the Schrӧdinger Equation
1:16
The Plausibility of the Schrӧdinger Equation, Part 1
1:17
The Plausibility of the Schrӧdinger Equation, Part 2
8:24
The Plausibility of the Schrӧdinger Equation, Part 3
13:45
Section 11: The Particle in a Box
The Particle in a Box Part I

56m 22s

Intro
0:00
Free Particle in a Box
0:28
Definition of a Free Particle in a Box
0:29
Amplitude of the Matter Wave
6:22
Intensity of the Wave
6:53
Probability Density
9:39
Probability that the Particle is Located Between x & dx
10:54
Probability that the Particle will be Found Between o & a
12:35
Wave Function & the Particle
14:59
Boundary Conditions
19:22
What Happened When There is No Constraint on the Particle
27:54
Diagrams
34:12
More on Probability Density
40:53
The Correspondence Principle
46:45
The Correspondence Principle
46:46
Normalizing the Wave Function
47:46
Normalizing the Wave Function
47:47
Normalized Wave Function & Normalization Constant
52:24
The Particle in a Box Part II

45m 24s

Intro
0:00
Free Particle in a Box
0:08
Free Particle in a 1-dimensional Box
0:09
For a Particle in a Box
3:57
Calculating Average Values & Standard Deviations
5:42
Average Value for the Position of a Particle
6:32
Standard Deviations for the Position of a Particle
10:51
Recall: Energy & Momentum are Represented by Operators
13:33
Recall: Schrӧdinger Equation in Operator Form
15:57
Average Value of a Physical Quantity that is Associated with an Operator
18:16
Average Momentum of a Free Particle in a Box
20:48
The Uncertainty Principle
24:42
Finding the Standard Deviation of the Momentum
25:08
Expression for the Uncertainty Principle
35:02
Summary of the Uncertainty Principle
41:28
The Particle in a Box Part III

48m 43s

Intro
0:00
2-Dimension
0:12
Dimension 2
0:31
Boundary Conditions
1:52
Partial Derivatives
4:27
Example I
6:08
The Particle in a Box, cont.
11:28
Operator Notation
12:04
Symbol for the Laplacian
13:50
The Equation Becomes…
14:30
Boundary Conditions
14:54
Separation of Variables
15:33
Solution to the 1-dimensional Case
16:31
Normalization Constant
22:32
3-Dimension
28:30
Particle in a 3-dimensional Box
28:31
In Del Notation
32:22
The Solutions
34:51
Expressing the State of the System for a Particle in a 3D Box
39:10
Energy Level & Degeneracy
43:35
Section 12: Postulates and Principles of Quantum Mechanics
The Postulates & Principles of Quantum Mechanics, Part I

46m 18s

Intro
0:00
Postulate I
0:31
Probability That The Particle Will Be Found in a Differential Volume Element
0:32
Example I: Normalize This Wave Function
11:30
Postulate II
18:20
Postulate II
18:21
Quantum Mechanical Operators: Position
20:48
Quantum Mechanical Operators: Kinetic Energy
21:57
Quantum Mechanical Operators: Potential Energy
22:42
Quantum Mechanical Operators: Total Energy
22:57
Quantum Mechanical Operators: Momentum
23:22
Quantum Mechanical Operators: Angular Momentum
23:48
More On The Kinetic Energy Operator
24:48
Angular Momentum
28:08
Angular Momentum Overview
28:09
Angular Momentum Operator in Quantum Mechanic
31:34
The Classical Mechanical Observable
32:56
Quantum Mechanical Operator
37:01
Getting the Quantum Mechanical Operator from the Classical Mechanical Observable
40:16
Postulate II, cont.
43:40
Quantum Mechanical Operators are Both Linear & Hermetical
43:41
The Postulates & Principles of Quantum Mechanics, Part II

39m 28s

Intro
0:00
Postulate III
0:09
Postulate III: Part I
0:10
Postulate III: Part II
5:56
Postulate III: Part III
12:43
Postulate III: Part IV
18:28
Postulate IV
23:57
Postulate IV
23:58
Postulate V
27:02
Postulate V
27:03
Average Value
36:38
Average Value
36:39
The Postulates & Principles of Quantum Mechanics, Part III

35m 32s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part III
0:10
Equations: Linear & Hermitian
0:11
Introduction to Hermitian Property
3:36
Eigenfunctions are Orthogonal
9:55
The Sequence of Wave Functions for the Particle in a Box forms an Orthonormal Set
14:34
Definition of Orthogonality
16:42
Definition of Hermiticity
17:26
Hermiticity: The Left Integral
23:04
Hermiticity: The Right Integral
28:47
Hermiticity: Summary
34:06
The Postulates & Principles of Quantum Mechanics, Part IV

29m 55s

Intro
0:00
The Postulates & Principles of Quantum Mechanics, Part IV
0:09
Operators can be Applied Sequentially
0:10
Sample Calculation 1
2:41
Sample Calculation 2
5:18
Commutator of Two Operators
8:16
The Uncertainty Principle
19:01
In the Case of Linear Momentum and Position Operator
23:14
When the Commutator of Two Operators Equals to Zero
26:31
Section 13: Postulates and Principles Example Problems, Including Particle in a Box
Example Problems I

54m 25s

Intro
0:00
Example I: Three Dimensional Box & Eigenfunction of The Laplacian Operator
0:37
Example II: Positions of a Particle in a 1-dimensional Box
15:46
Example III: Transition State & Frequency
29:29
Example IV: Finding a Particle in a 1-dimensional Box
35:03
Example V: Degeneracy & Energy Levels of a Particle in a Box
44:59
Example Problems II

46m 58s

Intro
0:00
Review
0:25
Wave Function
0:26
Normalization Condition
2:28
Observable in Classical Mechanics & Linear/Hermitian Operator in Quantum Mechanics
3:36
Hermitian
6:11
Eigenfunctions & Eigenvalue
8:20
Normalized Wave Functions
12:00
Average Value
13:42
If Ψ is Written as a Linear Combination
15:44
Commutator
16:45
Example I: Normalize The Wave Function
19:18
Example II: Probability of Finding of a Particle
22:27
Example III: Orthogonal
26:00
Example IV: Average Value of the Kinetic Energy Operator
30:22
Example V: Evaluate These Commutators
39:02
Example Problems III

44m 11s

Intro
0:00
Example I: Good Candidate for a Wave Function
0:08
Example II: Variance of the Energy
7:00
Example III: Evaluate the Angular Momentum Operators
15:00
Example IV: Real Eigenvalues Imposes the Hermitian Property on Operators
28:44
Example V: A Demonstration of Why the Eigenfunctions of Hermitian Operators are Orthogonal
35:33
Section 14: The Harmonic Oscillator
The Harmonic Oscillator I

35m 33s

Intro
0:00
The Harmonic Oscillator
0:10
Harmonic Motion
0:11
Classical Harmonic Oscillator
4:38
Hooke's Law
8:18
Classical Harmonic Oscillator, cont.
10:33
General Solution for the Differential Equation
15:16
Initial Position & Velocity
16:05
Period & Amplitude
20:42
Potential Energy of the Harmonic Oscillator
23:20
Kinetic Energy of the Harmonic Oscillator
26:37
Total Energy of the Harmonic Oscillator
27:23
Conservative System
34:37
The Harmonic Oscillator II

43m 4s

Intro
0:00
The Harmonic Oscillator II
0:08
Diatomic Molecule
0:10
Notion of Reduced Mass
5:27
Harmonic Oscillator Potential & The Intermolecular Potential of a Vibrating Molecule
7:33
The Schrӧdinger Equation for the 1-dimensional Quantum Mechanic Oscillator
14:14
Quantized Values for the Energy Level
15:46
Ground State & the Zero-Point Energy
21:50
Vibrational Energy Levels
25:18
Transition from One Energy Level to the Next
26:42
Fundamental Vibrational Frequency for Diatomic Molecule
34:57
Example: Calculate k
38:01
The Harmonic Oscillator III

26m 30s

Intro
0:00
The Harmonic Oscillator III
0:09
The Wave Functions Corresponding to the Energies
0:10
Normalization Constant
2:34
Hermite Polynomials
3:22
First Few Hermite Polynomials
4:56
First Few Wave-Functions
6:37
Plotting the Probability Density of the Wave-Functions
8:37
Probability Density for Large Values of r
14:24
Recall: Odd Function & Even Function
19:05
More on the Hermite Polynomials
20:07
Recall: If f(x) is Odd
20:36
Average Value of x
22:31
Average Value of Momentum
23:56
Section 15: The Rigid Rotator
The Rigid Rotator I

41m 10s

Intro
0:00
Possible Confusion from the Previous Discussion
0:07
Possible Confusion from the Previous Discussion
0:08
Rotation of a Single Mass Around a Fixed Center
8:17
Rotation of a Single Mass Around a Fixed Center
8:18
Angular Velocity
12:07
Rotational Inertia
13:24
Rotational Frequency
15:24
Kinetic Energy for a Linear System
16:38
Kinetic Energy for a Rotational System
17:42
Rotating Diatomic Molecule
19:40
Rotating Diatomic Molecule: Part 1
19:41
Rotating Diatomic Molecule: Part 2
24:56
Rotating Diatomic Molecule: Part 3
30:04
Hamiltonian of the Rigid Rotor
36:48
Hamiltonian of the Rigid Rotor
36:49
The Rigid Rotator II

30m 32s

Intro
0:00
The Rigid Rotator II
0:08
Cartesian Coordinates
0:09
Spherical Coordinates
1:55
r
6:15
θ
6:28
φ
7:00
Moving a Distance 'r'
8:17
Moving a Distance 'r' in the Spherical Coordinates
11:49
For a Rigid Rotator, r is Constant
13:57
Hamiltonian Operator
15:09
Square of the Angular Momentum Operator
17:34
Orientation of the Rotation in Space
19:44
Wave Functions for the Rigid Rotator
20:40
The Schrӧdinger Equation for the Quantum Mechanic Rigid Rotator
21:24
Energy Levels for the Rigid Rotator
26:58
The Rigid Rotator III

35m 19s

Intro
0:00
The Rigid Rotator III
0:11
When a Rotator is Subjected to Electromagnetic Radiation
1:24
Selection Rule
2:13
Frequencies at Which Absorption Transitions Occur
6:24
Energy Absorption & Transition
10:54
Energy of the Individual Levels Overview
20:58
Energy of the Individual Levels: Diagram
23:45
Frequency Required to Go from J to J + 1
25:53
Using Separation Between Lines on the Spectrum to Calculate Bond Length
28:02
Example I: Calculating Rotational Inertia & Bond Length
29:18
Example I: Calculating Rotational Inertia
29:19
Example I: Calculating Bond Length
32:56
Section 16: Oscillator and Rotator Example Problems
Example Problems I

33m 48s

Intro
0:00
Equations Review
0:11
Energy of the Harmonic Oscillator
0:12
Selection Rule
3:02
Observed Frequency of Radiation
3:27
Harmonic Oscillator Wave Functions
5:52
Rigid Rotator
7:26
Selection Rule for Rigid Rotator
9:15
Frequency of Absorption
9:35
Wave Numbers
10:58
Example I: Calculate the Reduced Mass of the Hydrogen Atom
11:44
Example II: Calculate the Fundamental Vibration Frequency & the Zero-Point Energy of This Molecule
13:37
Example III: Show That the Product of Two Even Functions is even
19:35
Example IV: Harmonic Oscillator
24:56
Example Problems II

46m 43s

Intro
0:00
Example I: Harmonic Oscillator
0:12
Example II: Harmonic Oscillator
23:26
Example III: Calculate the RMS Displacement of the Molecules
38:12
Section 17: The Hydrogen Atom
The Hydrogen Atom I

40m

Intro
0:00
The Hydrogen Atom I
1:31
Review of the Rigid Rotator
1:32
Hydrogen Atom & the Coulomb Potential
2:50
Using the Spherical Coordinates
6:33
Applying This Last Expression to Equation 1
10:19
Angular Component & Radial Component
13:26
Angular Equation
15:56
Solution for F(φ)
19:32
Determine The Normalization Constant
20:33
Differential Equation for T(a)
24:44
Legendre Equation
27:20
Legendre Polynomials
31:20
The Legendre Polynomials are Mutually Orthogonal
35:40
Limits
37:17
Coefficients
38:28
The Hydrogen Atom II

35m 58s

Intro
0:00
Associated Legendre Functions
0:07
Associated Legendre Functions
0:08
First Few Associated Legendre Functions
6:39
s, p, & d Orbital
13:24
The Normalization Condition
15:44
Spherical Harmonics
20:03
Equations We Have Found
20:04
Wave Functions for the Angular Component & Rigid Rotator
24:36
Spherical Harmonics Examples
25:40
Angular Momentum
30:09
Angular Momentum
30:10
Square of the Angular Momentum
35:38
Energies of the Rigid Rotator
38:21
The Hydrogen Atom III

36m 18s

Intro
0:00
The Hydrogen Atom III
0:34
Angular Momentum is a Vector Quantity
0:35
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Cartesian Coordinates
1:30
The Operators Corresponding to the Three Components of Angular Momentum Operator: In Spherical Coordinates
3:27
Z Component of the Angular Momentum Operator & the Spherical Harmonic
5:28
Magnitude of the Angular Momentum Vector
20:10
Classical Interpretation of Angular Momentum
25:22
Projection of the Angular Momentum Vector onto the xy-plane
33:24
The Hydrogen Atom IV

33m 55s

Intro
0:00
The Hydrogen Atom IV
0:09
The Equation to Find R( r )
0:10
Relation Between n & l
3:50
The Solutions for the Radial Functions
5:08
Associated Laguerre Polynomials
7:58
1st Few Associated Laguerre Polynomials
8:55
Complete Wave Function for the Atomic Orbitals of the Hydrogen Atom
12:24
The Normalization Condition
15:06
In Cartesian Coordinates
18:10
Working in Polar Coordinates
20:48
Principal Quantum Number
21:58
Angular Momentum Quantum Number
22:35
Magnetic Quantum Number
25:55
Zeeman Effect
30:45
The Hydrogen Atom V: Where We Are

51m 53s

Intro
0:00
The Hydrogen Atom V: Where We Are
0:13
Review
0:14
Let's Write Out ψ₂₁₁
7:32
Angular Momentum of the Electron
14:52
Representation of the Wave Function
19:36
Radial Component
28:02
Example: 1s Orbital
28:34
Probability for Radial Function
33:46
1s Orbital: Plotting Probability Densities vs. r
35:47
2s Orbital: Plotting Probability Densities vs. r
37:46
3s Orbital: Plotting Probability Densities vs. r
38:49
4s Orbital: Plotting Probability Densities vs. r
39:34
2p Orbital: Plotting Probability Densities vs. r
40:12
3p Orbital: Plotting Probability Densities vs. r
41:02
4p Orbital: Plotting Probability Densities vs. r
41:51
3d Orbital: Plotting Probability Densities vs. r
43:18
4d Orbital: Plotting Probability Densities vs. r
43:48
Example I: Probability of Finding an Electron in the 2s Orbital of the Hydrogen
45:40
The Hydrogen Atom VI

51m 53s

Intro
0:00
The Hydrogen Atom VI
0:07
Last Lesson Review
0:08
Spherical Component
1:09
Normalization Condition
2:02
Complete 1s Orbital Wave Function
4:08
1s Orbital Wave Function
4:09
Normalization Condition
6:28
Spherically Symmetric
16:00
Average Value
17:52
Example I: Calculate the Region of Highest Probability for Finding the Electron
21:19
2s Orbital Wave Function
25:32
2s Orbital Wave Function
25:33
Average Value
28:56
General Formula
32:24
The Hydrogen Atom VII

34m 29s

Intro
0:00
The Hydrogen Atom VII
0:12
p Orbitals
1:30
Not Spherically Symmetric
5:10
Recall That the Spherical Harmonics are Eigenfunctions of the Hamiltonian Operator
6:50
Any Linear Combination of These Orbitals Also Has The Same Energy
9:16
Functions of Real Variables
15:53
Solving for Px
16:50
Real Spherical Harmonics
21:56
Number of Nodes
32:56
Section 18: Hydrogen Atom Example Problems
Hydrogen Atom Example Problems I

43m 49s

Intro
0:00
Example I: Angular Momentum & Spherical Harmonics
0:20
Example II: Pair-wise Orthogonal Legendre Polynomials
16:40
Example III: General Normalization Condition for the Legendre Polynomials
25:06
Example IV: Associated Legendre Functions
32:13
The Hydrogen Atom Example Problems II

1h 1m 57s

Intro
0:00
Example I: Normalization & Pair-wise Orthogonal
0:13
Part 1: Normalized
0:43
Part 2: Pair-wise Orthogonal
16:53
Example II: Show Explicitly That the Following Statement is True for Any Integer n
27:10
Example III: Spherical Harmonics
29:26
Angular Momentum Cones
56:37
Angular Momentum Cones
56:38
Physical Interpretation of Orbital Angular Momentum in Quantum mechanics
1:00:16
The Hydrogen Atom Example Problems III

48m 33s

Intro
0:00
Example I: Show That ψ₂₁₁ is Normalized
0:07
Example II: Show That ψ₂₁₁ is Orthogonal to ψ₃₁₀
11:48
Example III: Probability That a 1s Electron Will Be Found Within 1 Bohr Radius of The Nucleus
18:35
Example IV: Radius of a Sphere
26:06
Example V: Calculate <r> for the 2s Orbital of the Hydrogen-like Atom
36:33
The Hydrogen Atom Example Problems IV

48m 33s

Intro
0:00
Example I: Probability Density vs. Radius Plot
0:11
Example II: Hydrogen Atom & The Coulombic Potential
14:16
Example III: Find a Relation Among <K>, <V>, & <E>
25:47
Example IV: Quantum Mechanical Virial Theorem
48:32
Example V: Find the Variance for the 2s Orbital
54:13
The Hydrogen Atom Example Problems V

48m 33s

Intro
0:00
Example I: Derive a Formula for the Degeneracy of a Given Level n
0:11
Example II: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
8:30
Example III: Using Linear Combinations to Represent the Spherical Harmonics as Functions of the Real Variables θ & φ
23:01
Example IV: Orbital Functions
31:51
Section 19: Spin Quantum Number and Atomic Term Symbols
Spin Quantum Number: Term Symbols I

59m 18s

Intro
0:00
Quantum Numbers Specify an Orbital
0:24
n
1:10
l
1:20
m
1:35
4th Quantum Number: s
2:02
Spin Orbitals
7:03
Spin Orbitals
7:04
Multi-electron Atoms
11:08
Term Symbols
18:08
Russell-Saunders Coupling & The Atomic Term Symbol
18:09
Example: Configuration for C
27:50
Configuration for C: 1s²2s²2p²
27:51
Drawing Every Possible Arrangement
31:15
Term Symbols
45:24
Microstate
50:54
Spin Quantum Number: Term Symbols II

34m 54s

Intro
0:00
Microstates
0:25
We Started With 21 Possible Microstates
0:26
³P State
2:05
Microstates in ³P Level
5:10
¹D State
13:16
³P State
16:10
²P₂ State
17:34
³P₁ State
18:34
³P₀ State
19:12
9 Microstates in ³P are Subdivided
19:40
¹S State
21:44
Quicker Way to Find the Different Values of J for a Given Basic Term Symbol
22:22
Ground State
26:27
Hund's Empirical Rules for Specifying the Term Symbol for the Ground Electronic State
27:29
Hund's Empirical Rules: 1
28:24
Hund's Empirical Rules: 2
29:22
Hund's Empirical Rules: 3 - Part A
30:22
Hund's Empirical Rules: 3 - Part B
31:18
Example: 1s²2s²2p²
31:54
Spin Quantum Number: Term Symbols III

38m 3s

Intro
0:00
Spin Quantum Number: Term Symbols III
0:14
Deriving the Term Symbols for the p² Configuration
0:15
Table: MS vs. ML
3:57
¹D State
16:21
³P State
21:13
¹S State
24:48
J Value
25:32
Degeneracy of the Level
27:28
When Given r Electrons to Assign to n Equivalent Spin Orbitals
30:18
p² Configuration
32:51
Complementary Configurations
35:12
Term Symbols & Atomic Spectra

57m 49s

Intro
0:00
Lyman Series
0:09
Spectroscopic Term Symbols
0:10
Lyman Series
3:04
Hydrogen Levels
8:21
Hydrogen Levels
8:22
Term Symbols & Atomic Spectra
14:17
Spin-Orbit Coupling
14:18
Selection Rules for Atomic Spectra
21:31
Selection Rules for Possible Transitions
23:56
Wave Numbers for The Transitions
28:04
Example I: Calculate the Frequencies of the Allowed Transitions from (4d) ²D →(2p) ²P
32:23
Helium Levels
49:50
Energy Levels for Helium
49:51
Transitions & Spin Multiplicity
52:27
Transitions & Spin Multiplicity
52:28
Section 20: Term Symbols Example Problems
Example Problems I

1h 1m 20s

Intro
0:00
Example I: What are the Term Symbols for the np¹ Configuration?
0:10
Example II: What are the Term Symbols for the np² Configuration?
20:38
Example III: What are the Term Symbols for the np³ Configuration?
40:46
Example Problems II

56m 34s

Intro
0:00
Example I: Find the Term Symbols for the nd² Configuration
0:11
Example II: Find the Term Symbols for the 1s¹2p¹ Configuration
27:02
Example III: Calculate the Separation Between the Doublets in the Lyman Series for Atomic Hydrogen
41:41
Example IV: Calculate the Frequencies of the Lines for the (4d) ²D → (3p) ²P Transition
48:53
Section 21: Equation Review for Quantum Mechanics
Quantum Mechanics: All the Equations in One Place

18m 24s

Intro
0:00
Quantum Mechanics Equations
0:37
De Broglie Relation
0:38
Statistical Relations
1:00
The Schrӧdinger Equation
1:50
The Particle in a 1-Dimensional Box of Length a
3:09
The Particle in a 2-Dimensional Box of Area a x b
3:48
The Particle in a 3-Dimensional Box of Area a x b x c
4:22
The Schrӧdinger Equation Postulates
4:51
The Normalization Condition
5:40
The Probability Density
6:51
Linear
7:47
Hermitian
8:31
Eigenvalues & Eigenfunctions
8:55
The Average Value
9:29
Eigenfunctions of Quantum Mechanics Operators are Orthogonal
10:53
Commutator of Two Operators
10:56
The Uncertainty Principle
11:41
The Harmonic Oscillator
13:18
The Rigid Rotator
13:52
Energy of the Hydrogen Atom
14:30
Wavefunctions, Radial Component, and Associated Laguerre Polynomial
14:44
Angular Component or Spherical Harmonic
15:16
Associated Legendre Function
15:31
Principal Quantum Number
15:43
Angular Momentum Quantum Number
15:50
Magnetic Quantum Number
16:21
z-component of the Angular Momentum of the Electron
16:53
Atomic Spectroscopy: Term Symbols
17:14
Atomic Spectroscopy: Selection Rules
18:03
Section 22: Molecular Spectroscopy
Spectroscopic Overview: Which Equation Do I Use & Why

50m 2s

Intro
0:00
Spectroscopic Overview: Which Equation Do I Use & Why
1:02
Lesson Overview
1:03
Rotational & Vibrational Spectroscopy
4:01
Frequency of Absorption/Emission
6:04
Wavenumbers in Spectroscopy
8:10
Starting State vs. Excited State
10:10
Total Energy of a Molecule (Leaving out the Electronic Energy)
14:02
Energy of Rotation: Rigid Rotor
15:55
Energy of Vibration: Harmonic Oscillator
19:08
Equation of the Spectral Lines
23:22
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:37
Harmonic Oscillator-Rigid Rotor Approximation (Making Corrections)
28:38
Vibration-Rotation Interaction
33:46
Centrifugal Distortion
36:27
Anharmonicity
38:28
Correcting for All Three Simultaneously
41:03
Spectroscopic Parameters
44:26
Summary
47:32
Harmonic Oscillator-Rigid Rotor Approximation
47:33
Vibration-Rotation Interaction
48:14
Centrifugal Distortion
48:20
Anharmonicity
48:28
Correcting for All Three Simultaneously
48:44
Vibration-Rotation

59m 47s

Intro
0:00
Vibration-Rotation
0:37
What is Molecular Spectroscopy?
0:38
Microwave, Infrared Radiation, Visible & Ultraviolet
1:53
Equation for the Frequency of the Absorbed Radiation
4:54
Wavenumbers
6:15
Diatomic Molecules: Energy of the Harmonic Oscillator
8:32
Selection Rules for Vibrational Transitions
10:35
Energy of the Rigid Rotator
16:29
Angular Momentum of the Rotator
21:38
Rotational Term F(J)
26:30
Selection Rules for Rotational Transition
29:30
Vibration Level & Rotational States
33:20
Selection Rules for Vibration-Rotation
37:42
Frequency of Absorption
39:32
Diagram: Energy Transition
45:55
Vibration-Rotation Spectrum: HCl
51:27
Vibration-Rotation Spectrum: Carbon Monoxide
54:30
Vibration-Rotation Interaction

46m 22s

Intro
0:00
Vibration-Rotation Interaction
0:13
Vibration-Rotation Spectrum: HCl
0:14
Bond Length & Vibrational State
4:23
Vibration Rotation Interaction
10:18
Case 1
12:06
Case 2
17:17
Example I: HCl Vibration-Rotation Spectrum
22:58
Rotational Constant for the 0 & 1 Vibrational State
26:30
Equilibrium Bond Length for the 1 Vibrational State
39:42
Equilibrium Bond Length for the 0 Vibrational State
42:13
Bₑ & αₑ
44:54
The Non-Rigid Rotator

29m 24s

Intro
0:00
The Non-Rigid Rotator
0:09
Pure Rotational Spectrum
0:54
The Selection Rules for Rotation
3:09
Spacing in the Spectrum
5:04
Centrifugal Distortion Constant
9:00
Fundamental Vibration Frequency
11:46
Observed Frequencies of Absorption
14:14
Difference between the Rigid Rotator & the Adjusted Rigid Rotator
16:51
Adjusted Rigid Rotator
21:31
Observed Frequencies of Absorption
26:26
The Anharmonic Oscillator

30m 53s

Intro
0:00
The Anharmonic Oscillator
0:09
Vibration-Rotation Interaction & Centrifugal Distortion
0:10
Making Corrections to the Harmonic Oscillator
4:50
Selection Rule for the Harmonic Oscillator
7:50
Overtones
8:40
True Oscillator
11:46
Harmonic Oscillator Energies
13:16
Anharmonic Oscillator Energies
13:33
Observed Frequencies of the Overtones
15:09
True Potential
17:22
HCl Vibrational Frequencies: Fundamental & First Few Overtones
21:10
Example I: Vibrational States & Overtones of the Vibrational Spectrum
22:42
Example I: Part A - First 4 Vibrational States
23:44
Example I: Part B - Fundamental & First 3 Overtones
25:31
Important Equations
27:45
Energy of the Q State
29:14
The Difference in Energy between 2 Successive States
29:23
Difference in Energy between 2 Spectral Lines
29:40
Electronic Transitions

1h 1m 33s

Intro
0:00
Electronic Transitions
0:16
Electronic State & Transition
0:17
Total Energy of the Diatomic Molecule
3:34
Vibronic Transitions
4:30
Selection Rule for Vibronic Transitions
9:11
More on Vibronic Transitions
10:08
Frequencies in the Spectrum
16:46
Difference of the Minima of the 2 Potential Curves
24:48
Anharmonic Zero-point Vibrational Energies of the 2 States
26:24
Frequency of the 0 → 0 Vibronic Transition
27:54
Making the Equation More Compact
29:34
Spectroscopic Parameters
32:11
Franck-Condon Principle
34:32
Example I: Find the Values of the Spectroscopic Parameters for the Upper Excited State
47:27
Table of Electronic States and Parameters
56:41
Section 23: Molecular Spectroscopy Example Problems
Example Problems I

33m 47s

Intro
0:00
Example I: Calculate the Bond Length
0:10
Example II: Calculate the Rotational Constant
7:39
Example III: Calculate the Number of Rotations
10:54
Example IV: What is the Force Constant & Period of Vibration?
16:31
Example V: Part A - Calculate the Fundamental Vibration Frequency
21:42
Example V: Part B - Calculate the Energies of the First Three Vibrational Levels
24:12
Example VI: Calculate the Frequencies of the First 2 Lines of the R & P Branches of the Vib-Rot Spectrum of HBr
26:28
Example Problems II

1h 1m 5s

Intro
0:00
Example I: Calculate the Frequencies of the Transitions
0:09
Example II: Specify Which Transitions are Allowed & Calculate the Frequencies of These Transitions
22:07
Example III: Calculate the Vibrational State & Equilibrium Bond Length
34:31
Example IV: Frequencies of the Overtones
49:28
Example V: Vib-Rot Interaction, Centrifugal Distortion, & Anharmonicity
54:47
Example Problems III

33m 31s

Intro
0:00
Example I: Part A - Derive an Expression for ∆G( r )
0:10
Example I: Part B - Maximum Vibrational Quantum Number
6:10
Example II: Part A - Derive an Expression for the Dissociation Energy of the Molecule
8:29
Example II: Part B - Equation for ∆G( r )
14:00
Example III: How Many Vibrational States are There for Br₂ before the Molecule Dissociates
18:16
Example IV: Find the Difference between the Two Minima of the Potential Energy Curves
20:57
Example V: Rotational Spectrum
30:51
Section 24: Statistical Thermodynamics
Statistical Thermodynamics: The Big Picture

1h 1m 15s

Intro
0:00
Statistical Thermodynamics: The Big Picture
0:10
Our Big Picture Goal
0:11
Partition Function (Q)
2:42
The Molecular Partition Function (q)
4:00
Consider a System of N Particles
6:54
Ensemble
13:22
Energy Distribution Table
15:36
Probability of Finding a System with Energy
16:51
The Partition Function
21:10
Microstate
28:10
Entropy of the Ensemble
30:34
Entropy of the System
31:48
Expressing the Thermodynamic Functions in Terms of The Partition Function
39:21
The Partition Function
39:22
Pi & U
41:20
Entropy of the System
44:14
Helmholtz Energy
48:15
Pressure of the System
49:32
Enthalpy of the System
51:46
Gibbs Free Energy
52:56
Heat Capacity
54:30
Expressing Q in Terms of the Molecular Partition Function (q)
59:31
Indistinguishable Particles
1:02:16
N is the Number of Particles in the System
1:03:27
The Molecular Partition Function
1:05:06
Quantum States & Degeneracy
1:07:46
Thermo Property in Terms of ln Q
1:10:09
Example: Thermo Property in Terms of ln Q
1:13:23
Statistical Thermodynamics: The Various Partition Functions I

47m 23s

Intro
0:00
Lesson Overview
0:19
Monatomic Ideal Gases
6:40
Monatomic Ideal Gases Overview
6:42
Finding the Parition Function of Translation
8:17
Finding the Parition Function of Electronics
13:29
Example: Na
17:42
Example: F
23:12
Energy Difference between the Ground State & the 1st Excited State
29:27
The Various Partition Functions for Monatomic Ideal Gases
32:20
Finding P
43:16
Going Back to U = (3/2) RT
46:20
Statistical Thermodynamics: The Various Partition Functions II

54m 9s

Intro
0:00
Diatomic Gases
0:16
Diatomic Gases
0:17
Zero-Energy Mark for Rotation
2:26
Zero-Energy Mark for Vibration
3:21
Zero-Energy Mark for Electronic
5:54
Vibration Partition Function
9:48
When Temperature is Very Low
14:00
When Temperature is Very High
15:22
Vibrational Component
18:48
Fraction of Molecules in the r Vibration State
21:00
Example: Fraction of Molecules in the r Vib. State
23:29
Rotation Partition Function
26:06
Heteronuclear & Homonuclear Diatomics
33:13
Energy & Heat Capacity
36:01
Fraction of Molecules in the J Rotational Level
39:20
Example: Fraction of Molecules in the J Rotational Level
40:32
Finding the Most Populated Level
44:07
Putting It All Together
46:06
Putting It All Together
46:07
Energy of Translation
51:51
Energy of Rotation
52:19
Energy of Vibration
52:42
Electronic Energy
53:35
Section 25: Statistical Thermodynamics Example Problems
Example Problems I

48m 32s

Intro
0:00
Example I: Calculate the Fraction of Potassium Atoms in the First Excited Electronic State
0:10
Example II: Show That Each Translational Degree of Freedom Contributes R/2 to the Molar Heat Capacity
14:46
Example III: Calculate the Dissociation Energy
21:23
Example IV: Calculate the Vibrational Contribution to the Molar heat Capacity of Oxygen Gas at 500 K
25:46
Example V: Upper & Lower Quantum State
32:55
Example VI: Calculate the Relative Populations of the J=2 and J=1 Rotational States of the CO Molecule at 25°C
42:21
Example Problems II

57m 30s

Intro
0:00
Example I: Make a Plot of the Fraction of CO Molecules in Various Rotational Levels
0:10
Example II: Calculate the Ratio of the Translational Partition Function for Cl₂ and Br₂ at Equal Volume & Temperature
8:05
Example III: Vibrational Degree of Freedom & Vibrational Molar Heat Capacity
11:59
Example IV: Calculate the Characteristic Vibrational & Rotational temperatures for Each DOF
45:03
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Physical Chemistry
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Sign up for Educator.com

Membership Overview

  • Unlimited access to our entire library of courses.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lesson files for programming and software training practice.
  • Track your course viewing progress.
  • Download lecture slides for taking notes.
  • Learn at your own pace... anytime, anywhere!

Math Lesson II

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Math Lesson II 0:46
    • Let F(x,y) = x²y³
    • Total Differential
    • Total Differential Expression
    • Example 1
  • More on Math Expression 13:26
    • Exact Total Differential Expression
    • Exact Differentials
    • Inexact Differentials
  • The Cyclic Rule 21:06
    • The Cyclic Rule
    • Example 2

Transcription: Math Lesson II

Hello and welcome back to www.educator.com and welcome back to Physical Chemistry.0000

In the last lesson we started our discussion of entropy δS.0004

Before we actually talk about entropy and investigate how it behaves, I want to take a little bit of a break and discuss a little bit of mathematics.0010

The mathematics that I’m going to discuss here is a continuation of some of the mathematics that we started with, the discussion of partial differentiation.0019

This is going to be more technique in partial differentiation and it is a series of techniques that we are going to be using absolutely all the time,0027

not only for the rest of thermodynamics but once we get into quantum mechanics and spectroscopy and things like that.0034

Let us go ahead and get started.0040

Let us just go ahead and start with an example here.0044

Let F be a function of xy and we will let it equal x² y³.0047

Let us go ahead and form some partial derivatives here.0059

δF/δx is going to = 2xy³.0063

Over on this side, we will form δF/δy that is going to = 3x² y².0071

Let us go ahead and form the next of set of partials, the second partials.0083

This is a function of x and y. I can take δF/δx of this and I can take δF/δy of this.0087

I can take δF/δx of this and I can take δF/δy of this.0093

Let us go ahead and do that.0097

Let us start off with δx and I will notate it this way.0098

I will do δ/δx of δF/δx which is the same as δ² F δx² that is going to = 2y³.0102

I will form y, I will form δ/δy of the δF/δx which = δ² F δy/δx this notation that is going to = 6xy².0120

I come over here and I’m going to form δ/δx of the δF/δy which is notated as δ² F δx/δy that is going to = 6xy².0138

I will do δ/δy of the δF/δy which is δ ⁺2F δy² and that is going to equal 6x² y.0157

Notice, 6xy² 6xy² δ² F δy/δx δ² F δx/δy are mixed partials in different orders they actually equal each other.0172

δ² F δy/δx = δ² F δx/δy this is not an accident.0191

This is not a coincidence, this is generally true.0208

Let F again = RF of x and y begin from the total differential of this.0218

The total differential is δF = δF/δx holding y constant × δx + δF/δy holding x constant × δy.0231

What we saw above, in other word this thing here is true in general.0261

If F(xy) is a function and δF/δx δF/δy δ² F δy/δx and δ² F δx/δy exist, in other words if the derivatives of the function exist and0270

are continuous ... which in our case there always going to be continuous, then like we said δ² F δy/δx = δ² F δx/δy.0308

In other words, the cross partials or the mixed partials are always going to be equal.0333

If you are given a function of two variables, three variables, let us just stick with two variables for the time being.0337

If we are given a function F of two variables and it is well defined and continuous and if the derivatives, the first derivatives and the second derivatives,0342

if they actually exist or continuous then the mixed partials will always be equal to each other.0350

Mixed partials are equal.0360

For the total differential that we wrote which is δF = δF/δx holding y constant × δx + δF/δy holding x constant × δy, this means this is δF/δx.0377

If I take the derivative of this with respect to y and if I take the derivative of this with respect to x, they are going to be equal.0401

For the total differential, the derivative of this with respect to the other variable equals the derivative of this with respect to the other variable.0415

This means that δ/δy of δF/δx = δ/δx δF/δy.0426

Given a total differential expression derived from F = F(xy) from an actual function, given a function and you write down the total differential,0451

from that total differential the partial of the differential coefficients are this thing and this thing.0478

The top differential coefficients with respect to the other variable are equal.0509

It is up here, this blue, the derivative of this expression with respect to this variable = the derivative of this expression with respect to that variable.0526

Straight up, so outside and inside.0541

The derivative of this with respect to this variable = the derivative of this with respect to this variable or you can just look over here.0545

The derivative of this with respect to y = the derivative of this with respect to x, the other variable.0552

That is all that is going on here.0559

This is always true.0560

Let us go ahead and do an example here.0565

A thermodynamic example, we know from the first law that δU = δQ reversible - δW this is the definition of the first law of thermodynamics.0572

We also have the definition of entropy δS = δQ reversible/ T.0586

I will just multiply by T what I get is T δS = δQ reversible.0595

When we take this, we are just here and plug it into here I get the following.0602

I get δU = T δS – δW.0607

You remember δW = P × δV so what I get is δU = T δS – P δV.0616

You have a total differential expression right there. δU = something × the differential S - something × that.0630

U is a function of S and V. So I have a differential expression which means that a partial of this with respect to this variable =0645

the partial of this with respect to that variable.0656

Now I can go ahead and write that.0659

Let me write this again on top of the same page, I have δU = T δS – P δV.0664

Therefore, a derivative of this with respect to V… So δT δV holding that constant = the derivative this with respect to that... δP δS,0679

holding that constant, this is negative.0699

That is that. This is a very interesting relation just from the fact that mixed partials are equal.0703

I have the total differential expression, I will automatically know that the differential this with respect to this variable = the differential of this0712

with respect to this variable holding the other variable constant.0719

So I have something like this.0723

This relationship this is an example, this relationship is one of a very important set of other relations, they are called Maxwell's relations.0725

This is the same Maxwell from electromagnetism.0757

This is not Maxwell’s equations, these are Maxwell thermodynamic relations, he did lot of work in a lot of fields.0761

These relations are one of very important set of relations called Maxwell's relations...among the variables of state of the system.0770

In this particular case, the variables involved are temperature, volume, pressure, and entropy.0789

We will come back to these but for right now this is just an example to show you that this applies to thermodynamics,0795

this mathematical theorem, but we will come back to Maxwell's relations later on when we discuss the free energy.0801

A function F(xy)…0819

So a state function F(xy) generates an exact total differential expression, δF = (δF/δx)y δx + (δF/δy)x δy0871

which guarantees that the mix partials are equal.0926

That takes care of the first part.0944

What is interesting is the converse is also true.0948

The converse is also true, converse is also true.0954

In other words, if we are given the total differential expression such as let us say δF = P δx + Q δy then if δP δy = δQ δx0965

then δF is exact and there exists an actual function F which is a function of the variables x and y.1012

If we are given the function, we write the total differential and the mix partials are equal.1036

If we are given a total differential expression and if we happen to take the mix partials, if the mixed partials are equal1043

then the actual function that gave rise to the differential expression that we wrote actually does exist.1049

In other words, first we are going from function we are differentiating down, now we are actually given the differential can we integrate backup.1055

That is what this is saying.1062

The only thing that I need to check is if the mix partials are equal, the δP δy= δQ δx,1063

then theoretically I can actually integrate this function and recover some function of x and y.1071

It goes in both ways.1076

There exist an actual F.1081

δQ and δQ for example, are examples of,1097

I will have to say a little bit more here.1109

If this δP/ δy if it does not equal the δQ/ δx, in other words if I'm given a total differential expression, I take the mixed partials,1115

I take the partials and they do not equal each other then there is no guarantee that such a function F(xy) exists.1129

In this particular case, δF is inexact.1157

δQ and δW are examples of inexact differentials.1165

For exact, we have the following.1194

In going from S1 to S2, U is exact δU=δ U which is U2 – U1.1198

If I go from S1 to S2 and back to S1, the cyclic of an exact differential = 0.1212

for inexact, if I go from S1 state 1 to state 2, the integral for example work it just equal the work.1222

It does not = δ work just the work.1232

If I do a cyclic S1 to S2 and if I come back to S1, the cyclic integral of an inexact differential does not = 0.1240

Let us see what else we can say, now let us talk about something called the cyclic rules.1256

Mixed partial is our first technique, now we are going to talk about another thing called the cyclic rule.1261

Let me move to black here.1267

There is another nice relation among the partial derivatives of a given function.1277

This one was actually quite beautiful and it is called the cyclic rule.1305

Let us start off, we will let z = z (xy).1314

z is a function of x and y, let us go over here.1322

For various values of x and y, I simply calculate z just the function of two variables.1330

z is basically like the third variable, it is the dependent variable.1352

Generally, we do things like F(xy) but we can say z(xy) because when I put an x and y and I did a particular calculation1355

it is going to spit out some number, that number we call z.1363

I have x and y which are independent variables and z is the dependent variable.1366

I have three variables.1371

z is a function of x and y so I have a total differential expression.1375

I can write δ(z) = δz/δx holding y constant × δx + δz/δy holding x constant × δy.1380

If I restrict my choices of x and y such that z never changes and I can do that, I can choose x and y, z is a function of x and y.1400

I can choose x and y such as z stays the same, it never changes.1431

In other words, δz = 0 then 0 = δz/δx y δx + δz/δy (x δy).1436

I’m going to make a little bit of change here because I'm actually setting z as constant δz = 0.1461

I can write this as δx holding z constant + δz/δyx and I can write this as δy holding z constant.1472

I’m going to go ahead and divide by this term right here, divide by the δy sub z.1490

What I end up getting is 0 = δz/δxy δx/δy z + δz/δy x.1500

I'm going to multiply by the reciprocal of that term.1524

When I multiply by the reciprocal everything I get 0 = δz/δx sub y × δx/δy sub z × δy/δz sub x + 1.1537

I’m going to rearrange and I’m going to move this over to the other side and I have the following.1566

I have δz/δx holding y constant × δx/δy holding z constant × δy/δz holding x constant = -1.1574

This is the cyclic rule.1595

If I have some function which is a function of x and y, z is a function of x and y, there is a relationship that exists among the partials.1603

The partial of z with respect to x holding y constant × a partial of x with respect to y holding the z constant × a partial of y1612

with respect to z holding x constant is always going to = -1.1619

Notice the relationship among the variables z x y, x y z, y z x, all three are represented in each case.1626

The zx xy yz, that is the best way to think about it.1637

Basically, what you can do if you want, you can just write the first variable, the xyz and1643

you can write the other variables in any combinations underneath that, that just do not repeat it.1648

You can write it as, y z and x and just go ahead and do something like this.1652

δx/δy δy/δz δz/δx xyz is constant yz x is constant, zx y is constant and it is always = -1.1663

That is the relationship that exists between the x, the y, and z.1672

Let us take a look at an example.1678

Example 2, let be the three variables be temperature, pressure, and volume be our three variables.1685

It make some difference which will be expressed as a function of the other two because T is function of P and V,1703

P is a function of T and V, V is a function of P and T.1710

It is just we arranging the equation, it is not a big deal.1712

We immediately write down the relations so let us do it this way.1717

Let us write the T, P, R.1721

Let us write P and T, V and I will pick T here, I will pick V here, and I will pick P here, this is PT V, TV P, VP T.1726

What I have the following.1749

I have δP δT holding V constant × δT δV holding P constant × δV δP holding T constant = -1.1751

I have a beautiful relationship.1768

The rate of change of pressure with respect to temperature under constant volume × the rate of change of temperature1773

with respect to volume under constant pressure × the rate of change in volume with respect to pressure under the change in temperature = -1.1779

This relation is valid.1791

The cyclic rule tells me that it is valid.1799

I have a relationship between T P and V, PV = NRT or PV = RT there is a relationship that exists between these.1801

I can go ahead and just flat out just write down the relationship that exists between the partial derivatives because I know the cyclic rule is true.1813

Let us go ahead and rearrange to make it a little bit nicer.1825

Recall, we said α =1/ V × δV / δT under constant pressure.1830

I'm going to go ahead and move the V there so I get δV δT under constant pressure = α V.1849

I have kappa the coefficient of compressibility -1/ V × δV δP under constant temperature.1860

I’m going to move it there so I get δV/ δP under constant temperature = - kappa × volume.1869

This thing right here becomes this δP δT under constant volume.1886

δT / δV I have δV / δV δT = α × volume this is just the reciprocal.1902

δT this is going to be × 1/ α × volume.1913

δV δP= - KV that is = -1.1921

I just put this and this into here appropriately and the V cancel and I'm left with δP δT V × - kappa/ α = -1.1932

Therefore, δP/ δT the constant V = α/ kappa.1956

in other words, if I keep the volume constant for every unit increase in temperature or unit change in temperature,1966

the change in pressure is α/ kappa, the coefficient of thermal expansion divided by the coefficient of compressibility.2000

I have this amazing relationship and these are tabulated for a lot of things or if they are not, they are easily calculated.2011

I have this amazing relationship that exists simply by virtue of the cyclic rule.2017

This is just an example of one application of the cyclic rule.2022

We will see other examples and other applications.2026

Thank you so much for joining us here at www.educator.com.2031

We will see you next time for the discussion back to entropy.2033

Thank you, bye.2038

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.