Connecting...

This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Algebra 1
For more information, please see full course syllabus of Algebra 1
Algebra 1 Greatest Common Factor & Factor by Grouping
Lecture Description
Factoring means to rewrite an expression as a product. In this lesson we are going to take a look at the greatest common factor and the technique of factor by grouping. First we will learn how to recognize the greatest common factor for a list of different terms and how we can actually factor out that greatest common factor when you have a polynomial. The greatest common factor is the greatest quantity that would evenly divide into all of the terms. This could be made up of numbers and variables. A good way of breaking down a large polynomial is factor by grouping.
Bookmark & Share
Embed
Share this knowledge with your friends!
Copy & Paste this embed code into your website’s HTML
Please ensure that your website editor is in text mode when you paste the code.(In Wordpress, the mode button is on the top right corner.)
×
Since this lesson is not free, only the preview will appear on your website.
- - Allow users to view the embedded video in full-size.
Next Lecture
Previous Lecture
1 answer
Last reply by: Sha Tao
Wed Apr 1, 2020 8:08 AM
Post by Sha Tao on April 1, 2020
In factor by grouping, 6(p+q)- r(p+q) is 6p+6q-rp-rq. You forgot the minus sign before rq.
1 answer
Wed May 15, 2019 8:32 PM
Post by Austin An on May 15, 2019
In Number 5 did you forget to carry the exponent when dividing because I thought 6w^2 / 3w = 2w^2
3 answers
Last reply by: John Stedge
Thu Jun 22, 2017 10:54 AM
Post by Destiny Coleman on September 23, 2014
I did the work on Example 6 differently so I'm wondering if my answer works. First I rearranged differently.
Instead of changing to: 9xy+12x-3y-4 I used 9xy-3y+12x-4
This changed to -3y(-3x+1)-4(-3x+1)
The answer that I recieved was (-3x+1)(-3y-4)