Connecting...

This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of College Calculus: Level II
For more information, please see full course syllabus of College Calculus: Level II
College Calculus: Level II Center of Mass
Lecture Description
In this video we are going to learn how to use integration to calculate the center of mass of a region. The idea here is that we will have a function y = f(x) and we will look at the region underneath it from x = a to x = b. We are going to imagine that we cut out a thin plate that fills that region. We want to figure out exactly where the center of mass is. In other words, if we were going to balance this region on a particular point, where would it balance. The center of mass is also known as the centroid and in some of the examples this word will be used.
Bookmark & Share
Embed
Share this knowledge with your friends!
Copy & Paste this embed code into your website’s HTML
Please ensure that your website editor is in text mode when you paste the code.(In Wordpress, the mode button is on the top right corner.)
×
Since this lesson is not free, only the preview will appear on your website.
- - Allow users to view the embedded video in full-size.
Next Lecture
Previous Lecture
1 answer
Last reply by: Vasilios Sahinidis
Sat Feb 4, 2012 10:40 PM
Post by Jeffery Maynard on January 21, 2011
Hi,
I was just wondering how you solve these problems if you have two equations such as X^(1/2) and x. Would you just subtract g(x) (call it x) from f(x) (x^(1/2)) to make a new f(x).
Thanks