Connecting...

For more information, please see full course syllabus of AP Physics C: Electricity & Magnetism
AP Physics C: Electricity & Magnetism Conductors
Stepping away from mathematical modelling and into some concepts of E&M, we learn about electric fields inside and outside a charged object. Using a sphere as our object, the electrons inside the sphere will congregate as far from the center as possible, and will cause the outside of the sphere to hold all of the charge. You may use superposition to solve or take this as fact, but the electric field at any point inside our sphere is zero. Outside of the sphere there is an electric field. Using Gauss’s Law, you can see how the charge inside the charged sphere is zero because the electric field inside is also zero. Likewise, hollow objects (for example, a hollow sphere) have a zero electric field inside as well. Since the electric field is zero inside, the charge inside is also zero. Next we’ll move on to how we hold a charge.
Share this knowledge with your friends!
Copy & Paste this embed code into your website’s HTML
Please ensure that your website editor is in text mode when you paste the code.(In Wordpress, the mode button is on the top right corner.)
- - Allow users to view the embedded video in full-size.
1 answer
Fri Mar 17, 2017 6:25 AM
Post by Mark Sim on March 16, 2017
Why is a charge free to move until the E=0? Why can't they move when E=o?