Professor Switkes

Professor Switkes

Riemann Sums, Definite Integrals, Fundamental Theorem of Calculus

Slide Duration:

Table of Contents

Section 1: Overview of Functions
Review of Functions

26m 29s

Intro
0:00
What is a Function
0:10
Domain and Range
0:21
Vertical Line Test
0:31
Example: Vertical Line Test
0:47
Function Examples
1:57
Example: Squared
2:10
Example: Natural Log
2:41
Example: Exponential
3:21
Example: Not Function
3:54
Odd and Even Functions
4:39
Example: Even Function
5:10
Example: Odd Function
5:53
Odd and Even Examples
6:48
Odd Function
6:55
Even Function
8:43
Increasing and Decreasing Functions
10:15
Example: Increasing
10:42
Example: Decreasing
10:55
Increasing and Decreasing Examples
11:41
Example: Increasing
11:48
Example: Decreasing
12:33
Types of Functions
13:32
Polynomials
13:45
Powers
14:06
Trigonometric
14:34
Rational
14:50
Exponential
15:13
Logarithmic
15:29
Lecture Example 1
15:55
Lecture Example 2
17:51
Additional Example 3
-1
Additional Example 4
-2
Compositions of Functions

12m 29s

Intro
0:00
Compositions
0:09
Alternative Notation
0:32
Three Functions
0:47
Lecture Example 1
1:19
Lecture Example 2
3:25
Lecture Example 3
6:45
Additional Example 4
-1
Additional Example 5
-2
Section 2: Limits
Average and Instantaneous Rates of Change

20m 59s

Intro
0:00
Rates of Change
0:11
Average Rate of Change
0:21
Instantaneous Rate of Change
0:33
Slope of the Secant Line
0:46
Slope of the Tangent Line
1:00
Lecture Example 1
1:14
Lecture Example 2
6:36
Lecture Example 3
11:30
Additional Example 4
-1
Additional Example 5
-2
Limit Investigations

22m 37s

Intro
0:00
What is a Limit?
0:10
Lecture Example 1
0:56
Lecture Example 2
5:28
Lecture Example 3
9:27
Additional Example 4
-1
Additional Example 5
-2
Algebraic Evaluation of Limits

28m 19s

Intro
0:00
Evaluating Limits
0:09
Lecture Example 1
1:06
Lecture Example 2
5:16
Lecture Example 3
8:15
Lecture Example 4
12:58
Additional Example 5
-1
Additional Example 6
-2
Formal Definition of a Limit

23m 39s

Intro
0:00
Formal Definition
0:13
Template
0:55
Epsilon and Delta
1:24
Lecture Example 1
1:40
Lecture Example 2
9:20
Additional Example 3
-1
Additional Example 4
-2
Continuity and the Intermediate Value Theorem

19m 9s

Intro
0:00
Continuity
0:13
Continuous
0:16
Discontinuous
0:37
Intermediate Value Theorem
0:52
Example
1:22
Lecture Example 1
2:58
Lecture Example 2
9:02
Additional Example 3
-1
Additional Example 4
-2
Section 3: Derivatives, part 1
Limit Definition of the Derivative

22m 52s

Intro
0:00
Limit Definition of the Derivative
0:11
Three Versions
0:13
Lecture Example 1
1:02
Lecture Example 2
4:33
Lecture Example 3
6:49
Lecture Example 4
10:11
Additional Example 5
-1
Additional Example 6
-2
The Power Rule

26m 1s

Intro
0:00
Power Rule of Differentiation
0:14
Power Rule with Constant
0:41
Sum/Difference
1:15
Lecture Example 1
1:59
Lecture Example 2
6:48
Lecture Example 3
11:22
Additional Example 4
-1
Additional Example 5
-2
The Product Rule

14m 54s

Statement of the Product Rule
0:08
Lecture Example 1
0:41
Lecture Example 2
2:27
Lecture Example 3
5:03
Additional Example 4
-1
Additional Example 5
-2
The Quotient Rule

19m 17s

Intro
0:00
Statement of the Quotient Rule
0:07
Carrying out the Differentiation
0:23
Quotient Rule in Words
1:00
Lecture Example 1
1:19
Lecture Example 2
4:23
Lecture Example 3
8:00
Additional Example 4
-1
Additional Example 5
-2
Applications of Rates of Change

17m 43s

Intro
0:00
Rates of Change
0:11
Lecture Example 1
0:44
Lecture Example 2
5:16
Lecture Example 3
7:38
Additional Example 4
-1
Additional Example 5
-2
Trigonometric Derivatives

26m 58s

Intro
0:00
Six Basic Trigonometric Functions
0:11
Patterns
0:47
Lecture Example 1
1:18
Lecture Example 2
7:38
Lecture Example 3
12:15
Lecture Example 4
14:25
Additional Example 5
-1
Additional Example 6
-2
The Chain Rule

23m 47s

Intro
0:00
Statement of the Chain Rule
0:09
Chain Rule for Three Functions
0:27
Lecture Example 1
1:00
Lecture Example 2
4:34
Lecture Example 3
7:23
Additional Example 4
-1
Additional Example 5
-2
Inverse Trigonometric Functions

27m 5s

Intro
0:00
Six Basic Inverse Trigonometric Functions
0:10
Lecture Example 1
1:11
Lecture Example 2
8:53
Lecture Example 3
12:37
Additional Example 4
-1
Additional Example 5
-2
Equation of a Tangent Line

15m 52s

Intro
0:00
Point Slope Form
0:10
Lecture Example 1
0:47
Lecture Example 2
3:15
Lecture Example 3
6:10
Additional Example 4
-1
Additional Example 5
-2
Section 4: Derivatives, part 2
Implicit Differentiation

30m 5s

Intro
0:00
Purpose
0:09
Implicit Function
0:20
Lecture Example 1
0:32
Lecture Example 2
7:14
Lecture Example 3
11:22
Lecture Example 4
16:43
Additional Example 5
-1
Additional Example 6
-2
Higher Derivatives

13m 16s

Intro
0:00
Notation
0:08
First Type
0:19
Second Type
0:54
Lecture Example 1
1:41
Lecture Example 2
3:15
Lecture Example 3
4:57
Additional Example 4
-1
Additional Example 5
-2
Logarithmic and Exponential Function Derivatives

17m 42s

Intro
0:00
Essential Equations
0:12
Lecture Example 1
1:34
Lecture Example 2
2:48
Lecture Example 3
5:54
Additional Example 4
-1
Additional Example 5
-2
Hyperbolic Trigonometric Function Derivatives

14m 30s

Intro
0:00
Essential Equations
0:15
Six Basic Hyperbolic Trigc Functions
0:32
Six Basic Inverse Hyperbolic Trig Functions
1:21
Lecture Example 1
1:48
Lecture Example 2
3:45
Lecture Example 3
7:09
Additional Example 4
-1
Additional Example 5
-2
Related Rates

29m 5s

Intro
0:00
What Are Related Rates?
0:08
Lecture Example 1
0:35
Lecture Example 2
5:25
Lecture Example 3
11:54
Additional Example 4
-1
Additional Example 5
-2
Linear Approximation

23m 52s

Intro
0:00
Essential Equations
0:09
Linear Approximation (Tangent Line)
0:18
Example: Graph
1:18
Differential (df)
2:06
Delta F
5:10
Lecture Example 1
6:38
Lecture Example 2
11:53
Lecture Example 3
15:54
Additional Example 4
-1
Additional Example 5
-2
Section 5: Application of Derivatives
Absolute Minima and Maxima

18m 57s

Intro
0:00
Minimums and Maximums
0:09
Absolute Minima and Maxima (Extrema)
0:53
Critical Points
1:25
Lecture Example 1
2:58
Lecture Example 2
6:57
Lecture Example 3
10:02
Additional Example 4
-1
Additional Example 5
-2
Mean Value Theorem and Rolle's Theorem

20m

Intro
0:00
Theorems
0:09
Mean Value Theorem
0:13
Graphical Explanation
0:36
Rolle's Theorem
2:06
Graphical Explanation
2:28
Lecture Example 1
3:36
Lecture Example 2
6:33
Lecture Example 3
9:32
Additional Example 4
-1
Additional Example 5
-2
First Derivative Test, Second Derivative Test

27m 11s

Intro
0:00
Local Minimum and Local Maximum
0:14
Example
1:01
First and Second Derivative Test
1:26
First Derivative Test
1:36
Example
2:00
Second Derivative Test (Concavity)
2:58
Example: Concave Down
3:15
Example: Concave Up
3:54
Inconclusive
4:19
Lecture Example 1
5:23
Lecture Example 2
12:03
Lecture Example 3
15:54
Additional Example 4
-1
Additional Example 5
-2
L'Hopital's Rule

23m 9s

Intro
0:00
Using L'Hopital's Rule
0:09
Informal Definition
0:34
Lecture Example 1
1:27
Lecture Example 2
4:00
Lecture Example 3
5:40
Lecture Example 4
9:38
Additional Example 5
-1
Additional Example 6
-2
Curve Sketching

40m 16s

Intro
0:00
Collecting Information
0:15
Domain and Range
0:17
Intercepts
0:21
Symmetry Properties (Even/Odd/Periodic)
0:33
Asymptotes (Vertical/Horizontal/Slant)
0:45
Critical Points
1:15
Increasing/Decreasing Intervals
1:24
Inflection Points
1:38
Concave Up/Down
1:52
Maxima/Minima
2:03
Lecture Example 1
2:58
Lecture Example 2
10:52
Lecture Example 3
17:55
Additional Example 4
-1
Additional Example 5
-2
Applied Optimization

25m 37s

Intro
0:00
Real World Problems
0:08
Sketch
0:11
Interval
0:20
Rewrite in One Variable
0:26
Maximum or Minimum
0:34
Critical Points
0:42
Optimal Result
0:52
Lecture Example 1
1:05
Lecture Example 2
6:12
Lecture Example 3
13:31
Additional Example 4
-1
Additional Example 5
-2
Newton's Method

25m 13s

Intro
0:00
Approximating Using Newton's Method
0:10
Good Guesses for Convergence
0:32
Lecture Example 1
0:49
Lecture Example 2
4:21
Lecture Example 3
7:59
Additional Example 4
-1
Additional Example 5
-2
Section 6: Integrals
Approximating Areas and Distances

36m 50s

Intro
0:00
Three Approximations
0:12
Right Endpoint, Left Endpoint, Midpoint
0:22
Formulas
1:05
Velocity and Distance
1:35
Lecture Example 1
2:28
Lecture Example 2
12:10
Lecture Example 3
19:43
Additional Example 4
-1
Additional Example 5
-2
Riemann Sums, Definite Integrals, Fundamental Theorem of Calculus

22m 2s

Intro
0:00
Important Equations
0:22
Riemann Sum
0:28
Integral
1:58
Integrand
2:35
Limits of Integration (Upper Limit, Lower Limit)
2:43
Other Equations
3:05
Fundamental Theorem of Calculus
4:00
Lecture Example 1
5:04
Lecture Example 2
10:43
Lecture Example 3
13:52
Additional Example 4
-1
Additional Example 5
-2
Substitution Method for Integration

23m 19s

Intro
0:00
U-Substitution
0:13
Important Equations
0:30
Purpose
0:36
Lecture Example 1
1:30
Lecture Example 2
6:17
Lecture Example 3
9:00
Lecture Example 4
11:24
Additional Example 5
-1
Additional Example 6
-2
Section 7: Application of Integrals, part 1
Area Between Curves

19m 59s

Intro
0:00
Area Between Two Curves
0:12
Graphic Description
0:34
Lecture Example 1
1:44
Lecture Example 2
5:39
Lecture Example 3
8:45
Additional Example 4
-1
Additional Example 5
-2
Volume by Method of Disks and Washers

24m 22s

Intro
0:00
Important Equations
0:16
Equation 1: Rotation about x-axis (disks)
0:27
Equation 2: Two curves about x-axis (washers)
3:38
Equation 3: Rotation about y-axis
5:31
Lecture Example 1
6:05
Lecture Example 2
8:28
Lecture Example 3
11:55
Additional Example 4
-1
Additional Example 5
-2
Volume by Method of Cylindrical Shells

30m 29s

Intro
0:00
Important Equations
0:50
Equation 1: Rotation about y-axis
1:04
Equation 2: Rotation about y-axis (2 curves)
7:34
Equation 3: Rotation about x-axis
8:15
Lecture Example 1
8:57
Lecture Example 2
14:26
Lecture Example 3
18:15
Additional Example 4
-1
Additional Example 5
-2
Average Value of a Function

16m 31s

Intro
0:00
Important Equations
0:11
Origin of Formula
0:34
Lecture Example 1
2:51
Lecture Example 2
5:30
Lecture Example 3
8:13
Additional Example 4
-1
Additional Example 5
-2
Section 8: Extra
Graphs of f, f', f''

23m 58s

Intro
0:00
Slope Function of f(x)
0:41
Slope is Zero
0:53
Slope is Positive
1:03
Slope is Negative
1:13
Slope Function of f'(x)
1:31
Slope is Zero
1:42
Slope is Positive
1:48
Slope is Negative
1:54
Lecture Example 1
2:23
Lecture Example 2
8:06
Lecture Example 3
12:36
Additional Example 4
-1
Additional Example 5
-2
Slope Fields for Differential Equations

18m 32s

Intro
0:00
Things to Remember
0:13
Graphic Description
0:42
Lecture Example 1
1:44
Lecture Example 2
6:59
Lecture Example 3
9:46
Additional Example 4
-1
Additional Example 5
-2
Separable Differential Equations

17m 4s

Intro
0:00
Differential Equations
0:10
Focus on Exponential Growth/Decay
0:27
Separating Variables
0:47
Lecture Example 1
1:35
Lecture Example 2
6:41
Lecture Example 3
9:36
Additional Example 4
-1
Additional Example 5
-2
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of College Calculus: Level I
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Practice Questions

  • Download Lecture Slides

  • Table of Contents

  • Related Books

Lecture Comments (10)

0 answers

Post by Israel Haile on October 23, 2015

I loved your methodology ,I wanna encourage you, I am 99.99% satisfied with your class,Stay Blessed !!!

0 answers

Post by Valeriya Pinkhasova on February 5, 2015

I am unable to watch additional example. Everytime I press on it ,lecture starts from the beginning .

0 answers

Post by Jason Kim on November 5, 2014

wait for the antideriviative of the lecture example 2 how do you exactly know that anti deriviative of 2x-5 is just x^2-5X. It could also be x^2-5x plus some number because the number just disappears when we derive it. So it could be x^2-5x+9 and the deriviative would be also 2x-5.
How can you assume that the antideriviative is just x^2-5x?

0 answers

Post by Johnny Zamora on January 14, 2014

She is Amazing

0 answers

Post by Jose Gonzalez-Gigato on November 10, 2013

'Additional Example 5' was excellent!

1 answer

Last reply by: Martina Alvarez
Fri Dec 9, 2011 4:28 AM

Post by Martina Alvarez on December 9, 2011

Ex: 2

13 min.

=(36-30) - (1-5)
=6 - (-4)
=10 not 8

0 answers

Post by David Bascom on September 4, 2011

In lecture example 3 where did 3xsquared come from?

1 answer

Last reply by: Jose Gonzalez-Gigato
Sun Nov 10, 2013 11:30 AM

Post by Okwudili Ezeh on July 21, 2011

The graph was supposed to be a sine graph not a cosine graph.

Riemann Sums, Definite Integrals, Fundamental Theorem of Calculus

  • Geometrically, Riemann sums represent sums of rectangle approximations.
  • The definite integral is a limit of Riemann sums.
  • For very simple functions, it is possible to directly compute Riemann sums and then take the limit.
  • Though this topic is very important theoretically, in practice we will compute integrals by using the First Fundamental Theorem of Calculus.

Riemann Sums, Definite Integrals, Fundamental Theorem of Calculus

15 dx
  • 15 dx = x |15
  • 15 dx = 5 − 1
15 dx = 4
0π cosx (sinx)3 dx
  • u = sinx
  • du = cosx  dx
  • 0π cosx (sinx)3 dx = ∫0π u3 du
  • 0π cosx (sinx)3 dx = [(u4)/4] |0π
  • Remember, the limits of the integral are dependent on x. We must plug back in for x before using the original limits
  • 0π cosx (sinx)3 dx = [((sinx)4)/4] |0π
  • 0π cosx (sinx)3 dx = [((sinπ)4)/4] − [((sin0)4)/4]
  • 0π cosx (sinx)3 dx = [0/4] − [0/4]
0π cosx (sinx)3 dx = 0
−[(π)/2][(π)/2] 5 cosx  dx
  • −[(π)/2][(π)/2] 5 cosx  dx = 5 sinx |−[(π)/2][(π)/2]
  • −[(π)/2][(π)/2] 5 cosx  dx = 5 sin[(π)/2] − 5 sin[(−π)/2]
  • −[(π)/2][(π)/2] 5 cosx  dx = 5 − (−5)
−[(π)/2][(π)/2] 5 cosx  dx = 10
Confirm that ∫−22 x2 dx = 2 ∫02 x2 dx
  • −22 x2 dx = [(x3)/3] |−22
  • −22 x2 dx = [(23)/3] − [((−2)3)/3]
  • −22 x2 dx = [8/3] + [8/3]
  • −22 x2 dx = [16/3]
  • 2 ∫02 x2 dx = 2 [(x3)/3] |02
  • 2 ∫02 x2 dx = 2 [(23)/3] − 2[(03)/3]
  • 2 ∫02 x2 dx = [16/3]
  • This is a property of integrals involving even functions
  • −aa f(x)  dx = 2 ∫0a f(x)  dx if f(x) is even
Yes, ∫−22 x2 dx = 2 ∫02 x2 dx
0ln5 e2x dx
  • u = 2x
  • du = 2  dx
  • 0ln5 e5x dx = [1/2] ∫0ln5 eu du
  • 0ln5 e5x dx = [1/2] eu |0ln5
  • 0ln5 e5x dx = [1/2] e2x |0ln5
  • 0ln5 e5x dx = [1/2] e2 ln5 − [1/2] e2(0)
  • 0ln5 e5x dx = [1/2] eln52 − [1/2] (1)
  • 0ln5 e5x dx = [25/2] − [1/2]
0ln5 e5x dx = 12
−11 x2 + 3x + 1  dx
  • −11 x2 + 3x + 1  dx = ∫−11 x2 dx + ∫−11 3x  dx + ∫−11  dx
  • −11 x2 + 3x + 1  dx = [(x3)/3] |−11 + [(3x2)/2] |−11 + x |−11
  • −11 x2 + 3x + 1  dx = [1/3] + [1/3] + [3/2] − [3/2] + 1 + 1
−11 x2 + 3x + 1  dx = [8/3]
−11 x3 dx
  • −11 x3 dx = [(x4)/4] |−11
  • −11 x3 dx = [1/4] − [1/4]
  • Property of odd functions
  • −aa f(x) = 0 if f(x) is odd
−11 x3 dx = 0
02 [1/(√{4 − x2})] dx
  • 02 [1/(√{4 − x2})] dx = ∫02 [1/(√{22 − x2})] dx
  • 02 [1/(√{4 − x2})] dx = sin−1 [x/2] |02
  • 02 [1/(√{4 − x2})] dx = sin−1 1 − sin−1 0
  • 02 [1/(√{4 − x2})] dx = [(π)/2] − 0
02 [1/(√{4 − x2})] dx = [(π)/2]
01 [1/(√{4 − x2})] dx + ∫12 [1/(√{4 − x2})] dx
  • 01 [1/(√{4 − x2})] dx + ∫12 [1/(√{4 − x2})] dx = sin−1 [x/2] |01 + sin−1 [x/2] |12
  • 01 [1/(√{4 − x2})] dx + ∫12 [1/(√{4 − x2})] dx = sin−1 [1/2] − sin−1 0 + sin−1 1 − sin−1 [1/2]
  • 01 [1/(√{4 − x2})] dx + ∫12 [1/(√{4 − x2})] dx = sin−1 1 − sin−1 0
  • Another property of integrals.
  • ab f(x)  dx + ∫bc f(x)  dx = ∫ac f(x)  dx
01 [1/(√{4 − x2})] dx + ∫12 [1/(√{4 − x2})] dx = [(π)/2]
Show that ∫12 ex dx = − ∫21 ex dx
  • 12 ex dx = ex |12
  • 12 ex dx = e2 − e1
  • − ∫21 ex dx = − ex |21
  • − ∫21 ex dx = −e1 − (−e2)
  • − ∫21 ex dx = e2 − e1
12 ex dx = − ∫21 ex dx
Given the values below, use right-hand Riemann Sum with 4 intervals to approximate ∫010 f(x) dx
f(0) = 2        f(3) = 5        f(4) = 5.5 f(7) = 3        f(10) = 7
  • 010 f(x) dx ≈ 5(3 − 0) + 5.5 (4 − 3) + 3(7 − 4) + 7(10 − 7)
  • 010 f(x) dx ≈ 15 + 5.5 + 9 + 21
010 f(x) dx ≈ 50.5
Given the values below, use left-hand Riemann Sum with 4 intervals to approximate ∫010 f(x) dx
f(0) = 2        f(3) = 5        f(4) = 5.5 f(7) = 3        f(10) = 7
  • 010 f(x) dx ≈ 2(3 − 0) + 5(4 − 3) + 5.5(7 − 4) + 3(10 − 7)
  • 010 f(x) dx ≈ 6 + 5 + 16.5 + 9
010 f(x) dx ≈ 36.5
Given the values below, use right-hand Riemann Sum with 2 intervals to approximate ∫04 f(x) dx
f(0) = 2        f(3) = 5        f(4) = 5.5 f(7) = 3        f(10) = 7
  • 04 f(x) dx ≈ 5(3 − 0) + 5.5(4 − 3)
  • 04 f(x) dx ≈ 15 + 5.5
04 f(x) dx ≈ 20.5
Given the values below, use right-hand Riemann Sum with 5 intervals to approximate ∫−55 f(x) dx
f(−5) = 25        f(−1) = 1        f(0) = 0 f(2) = 4        f(4) = 16        f(5) = 25
  • −55 f(x) dx ≈ 1(−1 − (−5)) + 0(0 − (−1)) + 4(2 − 0) + 16(4 − 2) + 25(5 − 4)
  • −55 f(x) dx ≈ 4 + 0 + 8 + 32 + 25
−55 f(x) dx ≈ 69
Given the values below, use right-hand Riemann Sum with 3 intervals to approximate ∫05 f(x) dx
f(−5) = 25        f(−1) = 1        f(0) = 0 f(2) = 4        f(4) = 16        f(5) = 25
  • 05 f(x) dx ≈ 4(2 − 0) + 16(4 − 2) + 25(5 − 4)
  • 05 f(x) dx ≈ 8 + 32 + 25
05 f(x) dx ≈ 65
Given the values below, use left-hand Riemann Sum with 2 intervals to approximate ∫−50 f(x) dx
f(−5) = 25        f(−1) = 1        f(0) = 0 f(2) = 4        f(4) = 16        f(5) = 25
  • −50 f(x) dx ≈ 25(−1 − (−5)) + 1(0 − (−1))
  • −50 f(x) dx ≈ 100 + 1
−50 f(x) dx ≈ 101
Given the values below, use right-hand Riemann Sum with 4 intervals to approximate ∫−22 f(x) dx
f(−2) = −8        f(−1) = −1        f(0) = 0 f(1) = 1        f(2) = 8
  • −22 f(x) dx ≈ −1(−1 −(−2)) + 0(0 − (−1)) + 1(1 − 0) 8(2 − 1)
  • −22 f(x) dx ≈ −1 + 0 + 1 + 8
−22 f(x) dx ≈ 8
Given the values below, use left-hand Riemann Sum with 4 intervals to approximate ∫−22 f(x) dx
f(−2) = −8        f(−1) = −1        f(0) = 0 f(1) = 1        f(2) = 8
  • −22 f(x) dx ≈ −8(−1 − (−2)) + −1(0 − (−1)) + 0(1 − 0) + 1(2 − 1)
  • −22 f(x) dx ≈ −8 − 1 + 0 + 1
−22 f(x) dx ≈ −8
Given the values below, use right-hand Riemann Sum with 6 intervals to approximate ∫012 f(x) dx
f(−2) = −8        f(−1) = −1        f(0) = 0 f(1) = 1        f(2) = 8        f(4) = 64 f(8) = 512        f(10) = 1000        f(12) = 1728
  • 012 f(x) dx ≈ 1(1 − 0) + 8(2 − 1) + 64(4 − 2) + 512(8 − 4) + 1000(10 − 8) + 1728(12 − 10)
  • 012 f(x) dx ≈ 1 + 8 + 128 + 2048 + 2000 + 3456
012 f(x) dx ≈ 7641
Given the values below, use right-hand Riemann Sum with 6 intervals to approximate ∫08 f(x) dx
f(−2) = −8        f(−1) = −1        f(0) = 0 f(1) = 1        f(2) = 8        f(4) = 64 f(8) = 512        f(10) = 1000        f(12) = 1728
  • 08 f(x) dx ≈ 1(1 − 0) + 8(2 − 1) + 64(4 − 2) + 512(8 − 4)
  • 08 f(x) dx ≈ 1 + 8 + 128 + 2048
08 f(x) dx ≈ 2185

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

Riemann Sums, Definite Integrals, Fundamental Theorem of Calculus

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Important Equations 0:22
    • Riemann Sum
    • Integral
    • Integrand
    • Limits of Integration (Upper Limit, Lower Limit)
    • Other Equations
    • Fundamental Theorem of Calculus
  • Lecture Example 1 5:04
  • Lecture Example 2 10:43
  • Lecture Example 3 13:52
  • Additional Example 4
  • Additional Example 5
Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.