Professor Switkes

Professor Switkes

Volume by Method of Cylindrical Shells

Slide Duration:

Table of Contents

Section 1: Overview of Functions
Review of Functions

26m 29s

Intro
0:00
What is a Function
0:10
Domain and Range
0:21
Vertical Line Test
0:31
Example: Vertical Line Test
0:47
Function Examples
1:57
Example: Squared
2:10
Example: Natural Log
2:41
Example: Exponential
3:21
Example: Not Function
3:54
Odd and Even Functions
4:39
Example: Even Function
5:10
Example: Odd Function
5:53
Odd and Even Examples
6:48
Odd Function
6:55
Even Function
8:43
Increasing and Decreasing Functions
10:15
Example: Increasing
10:42
Example: Decreasing
10:55
Increasing and Decreasing Examples
11:41
Example: Increasing
11:48
Example: Decreasing
12:33
Types of Functions
13:32
Polynomials
13:45
Powers
14:06
Trigonometric
14:34
Rational
14:50
Exponential
15:13
Logarithmic
15:29
Lecture Example 1
15:55
Lecture Example 2
17:51
Additional Example 3
-1
Additional Example 4
-2
Compositions of Functions

12m 29s

Intro
0:00
Compositions
0:09
Alternative Notation
0:32
Three Functions
0:47
Lecture Example 1
1:19
Lecture Example 2
3:25
Lecture Example 3
6:45
Additional Example 4
-1
Additional Example 5
-2
Section 2: Limits
Average and Instantaneous Rates of Change

20m 59s

Intro
0:00
Rates of Change
0:11
Average Rate of Change
0:21
Instantaneous Rate of Change
0:33
Slope of the Secant Line
0:46
Slope of the Tangent Line
1:00
Lecture Example 1
1:14
Lecture Example 2
6:36
Lecture Example 3
11:30
Additional Example 4
-1
Additional Example 5
-2
Limit Investigations

22m 37s

Intro
0:00
What is a Limit?
0:10
Lecture Example 1
0:56
Lecture Example 2
5:28
Lecture Example 3
9:27
Additional Example 4
-1
Additional Example 5
-2
Algebraic Evaluation of Limits

28m 19s

Intro
0:00
Evaluating Limits
0:09
Lecture Example 1
1:06
Lecture Example 2
5:16
Lecture Example 3
8:15
Lecture Example 4
12:58
Additional Example 5
-1
Additional Example 6
-2
Formal Definition of a Limit

23m 39s

Intro
0:00
Formal Definition
0:13
Template
0:55
Epsilon and Delta
1:24
Lecture Example 1
1:40
Lecture Example 2
9:20
Additional Example 3
-1
Additional Example 4
-2
Continuity and the Intermediate Value Theorem

19m 9s

Intro
0:00
Continuity
0:13
Continuous
0:16
Discontinuous
0:37
Intermediate Value Theorem
0:52
Example
1:22
Lecture Example 1
2:58
Lecture Example 2
9:02
Additional Example 3
-1
Additional Example 4
-2
Section 3: Derivatives, part 1
Limit Definition of the Derivative

22m 52s

Intro
0:00
Limit Definition of the Derivative
0:11
Three Versions
0:13
Lecture Example 1
1:02
Lecture Example 2
4:33
Lecture Example 3
6:49
Lecture Example 4
10:11
Additional Example 5
-1
Additional Example 6
-2
The Power Rule

26m 1s

Intro
0:00
Power Rule of Differentiation
0:14
Power Rule with Constant
0:41
Sum/Difference
1:15
Lecture Example 1
1:59
Lecture Example 2
6:48
Lecture Example 3
11:22
Additional Example 4
-1
Additional Example 5
-2
The Product Rule

14m 54s

Statement of the Product Rule
0:08
Lecture Example 1
0:41
Lecture Example 2
2:27
Lecture Example 3
5:03
Additional Example 4
-1
Additional Example 5
-2
The Quotient Rule

19m 17s

Intro
0:00
Statement of the Quotient Rule
0:07
Carrying out the Differentiation
0:23
Quotient Rule in Words
1:00
Lecture Example 1
1:19
Lecture Example 2
4:23
Lecture Example 3
8:00
Additional Example 4
-1
Additional Example 5
-2
Applications of Rates of Change

17m 43s

Intro
0:00
Rates of Change
0:11
Lecture Example 1
0:44
Lecture Example 2
5:16
Lecture Example 3
7:38
Additional Example 4
-1
Additional Example 5
-2
Trigonometric Derivatives

26m 58s

Intro
0:00
Six Basic Trigonometric Functions
0:11
Patterns
0:47
Lecture Example 1
1:18
Lecture Example 2
7:38
Lecture Example 3
12:15
Lecture Example 4
14:25
Additional Example 5
-1
Additional Example 6
-2
The Chain Rule

23m 47s

Intro
0:00
Statement of the Chain Rule
0:09
Chain Rule for Three Functions
0:27
Lecture Example 1
1:00
Lecture Example 2
4:34
Lecture Example 3
7:23
Additional Example 4
-1
Additional Example 5
-2
Inverse Trigonometric Functions

27m 5s

Intro
0:00
Six Basic Inverse Trigonometric Functions
0:10
Lecture Example 1
1:11
Lecture Example 2
8:53
Lecture Example 3
12:37
Additional Example 4
-1
Additional Example 5
-2
Equation of a Tangent Line

15m 52s

Intro
0:00
Point Slope Form
0:10
Lecture Example 1
0:47
Lecture Example 2
3:15
Lecture Example 3
6:10
Additional Example 4
-1
Additional Example 5
-2
Section 4: Derivatives, part 2
Implicit Differentiation

30m 5s

Intro
0:00
Purpose
0:09
Implicit Function
0:20
Lecture Example 1
0:32
Lecture Example 2
7:14
Lecture Example 3
11:22
Lecture Example 4
16:43
Additional Example 5
-1
Additional Example 6
-2
Higher Derivatives

13m 16s

Intro
0:00
Notation
0:08
First Type
0:19
Second Type
0:54
Lecture Example 1
1:41
Lecture Example 2
3:15
Lecture Example 3
4:57
Additional Example 4
-1
Additional Example 5
-2
Logarithmic and Exponential Function Derivatives

17m 42s

Intro
0:00
Essential Equations
0:12
Lecture Example 1
1:34
Lecture Example 2
2:48
Lecture Example 3
5:54
Additional Example 4
-1
Additional Example 5
-2
Hyperbolic Trigonometric Function Derivatives

14m 30s

Intro
0:00
Essential Equations
0:15
Six Basic Hyperbolic Trigc Functions
0:32
Six Basic Inverse Hyperbolic Trig Functions
1:21
Lecture Example 1
1:48
Lecture Example 2
3:45
Lecture Example 3
7:09
Additional Example 4
-1
Additional Example 5
-2
Related Rates

29m 5s

Intro
0:00
What Are Related Rates?
0:08
Lecture Example 1
0:35
Lecture Example 2
5:25
Lecture Example 3
11:54
Additional Example 4
-1
Additional Example 5
-2
Linear Approximation

23m 52s

Intro
0:00
Essential Equations
0:09
Linear Approximation (Tangent Line)
0:18
Example: Graph
1:18
Differential (df)
2:06
Delta F
5:10
Lecture Example 1
6:38
Lecture Example 2
11:53
Lecture Example 3
15:54
Additional Example 4
-1
Additional Example 5
-2
Section 5: Application of Derivatives
Absolute Minima and Maxima

18m 57s

Intro
0:00
Minimums and Maximums
0:09
Absolute Minima and Maxima (Extrema)
0:53
Critical Points
1:25
Lecture Example 1
2:58
Lecture Example 2
6:57
Lecture Example 3
10:02
Additional Example 4
-1
Additional Example 5
-2
Mean Value Theorem and Rolle's Theorem

20m

Intro
0:00
Theorems
0:09
Mean Value Theorem
0:13
Graphical Explanation
0:36
Rolle's Theorem
2:06
Graphical Explanation
2:28
Lecture Example 1
3:36
Lecture Example 2
6:33
Lecture Example 3
9:32
Additional Example 4
-1
Additional Example 5
-2
First Derivative Test, Second Derivative Test

27m 11s

Intro
0:00
Local Minimum and Local Maximum
0:14
Example
1:01
First and Second Derivative Test
1:26
First Derivative Test
1:36
Example
2:00
Second Derivative Test (Concavity)
2:58
Example: Concave Down
3:15
Example: Concave Up
3:54
Inconclusive
4:19
Lecture Example 1
5:23
Lecture Example 2
12:03
Lecture Example 3
15:54
Additional Example 4
-1
Additional Example 5
-2
L'Hopital's Rule

23m 9s

Intro
0:00
Using L'Hopital's Rule
0:09
Informal Definition
0:34
Lecture Example 1
1:27
Lecture Example 2
4:00
Lecture Example 3
5:40
Lecture Example 4
9:38
Additional Example 5
-1
Additional Example 6
-2
Curve Sketching

40m 16s

Intro
0:00
Collecting Information
0:15
Domain and Range
0:17
Intercepts
0:21
Symmetry Properties (Even/Odd/Periodic)
0:33
Asymptotes (Vertical/Horizontal/Slant)
0:45
Critical Points
1:15
Increasing/Decreasing Intervals
1:24
Inflection Points
1:38
Concave Up/Down
1:52
Maxima/Minima
2:03
Lecture Example 1
2:58
Lecture Example 2
10:52
Lecture Example 3
17:55
Additional Example 4
-1
Additional Example 5
-2
Applied Optimization

25m 37s

Intro
0:00
Real World Problems
0:08
Sketch
0:11
Interval
0:20
Rewrite in One Variable
0:26
Maximum or Minimum
0:34
Critical Points
0:42
Optimal Result
0:52
Lecture Example 1
1:05
Lecture Example 2
6:12
Lecture Example 3
13:31
Additional Example 4
-1
Additional Example 5
-2
Newton's Method

25m 13s

Intro
0:00
Approximating Using Newton's Method
0:10
Good Guesses for Convergence
0:32
Lecture Example 1
0:49
Lecture Example 2
4:21
Lecture Example 3
7:59
Additional Example 4
-1
Additional Example 5
-2
Section 6: Integrals
Approximating Areas and Distances

36m 50s

Intro
0:00
Three Approximations
0:12
Right Endpoint, Left Endpoint, Midpoint
0:22
Formulas
1:05
Velocity and Distance
1:35
Lecture Example 1
2:28
Lecture Example 2
12:10
Lecture Example 3
19:43
Additional Example 4
-1
Additional Example 5
-2
Riemann Sums, Definite Integrals, Fundamental Theorem of Calculus

22m 2s

Intro
0:00
Important Equations
0:22
Riemann Sum
0:28
Integral
1:58
Integrand
2:35
Limits of Integration (Upper Limit, Lower Limit)
2:43
Other Equations
3:05
Fundamental Theorem of Calculus
4:00
Lecture Example 1
5:04
Lecture Example 2
10:43
Lecture Example 3
13:52
Additional Example 4
-1
Additional Example 5
-2
Substitution Method for Integration

23m 19s

Intro
0:00
U-Substitution
0:13
Important Equations
0:30
Purpose
0:36
Lecture Example 1
1:30
Lecture Example 2
6:17
Lecture Example 3
9:00
Lecture Example 4
11:24
Additional Example 5
-1
Additional Example 6
-2
Section 7: Application of Integrals, part 1
Area Between Curves

19m 59s

Intro
0:00
Area Between Two Curves
0:12
Graphic Description
0:34
Lecture Example 1
1:44
Lecture Example 2
5:39
Lecture Example 3
8:45
Additional Example 4
-1
Additional Example 5
-2
Volume by Method of Disks and Washers

24m 22s

Intro
0:00
Important Equations
0:16
Equation 1: Rotation about x-axis (disks)
0:27
Equation 2: Two curves about x-axis (washers)
3:38
Equation 3: Rotation about y-axis
5:31
Lecture Example 1
6:05
Lecture Example 2
8:28
Lecture Example 3
11:55
Additional Example 4
-1
Additional Example 5
-2
Volume by Method of Cylindrical Shells

30m 29s

Intro
0:00
Important Equations
0:50
Equation 1: Rotation about y-axis
1:04
Equation 2: Rotation about y-axis (2 curves)
7:34
Equation 3: Rotation about x-axis
8:15
Lecture Example 1
8:57
Lecture Example 2
14:26
Lecture Example 3
18:15
Additional Example 4
-1
Additional Example 5
-2
Average Value of a Function

16m 31s

Intro
0:00
Important Equations
0:11
Origin of Formula
0:34
Lecture Example 1
2:51
Lecture Example 2
5:30
Lecture Example 3
8:13
Additional Example 4
-1
Additional Example 5
-2
Section 8: Extra
Graphs of f, f', f''

23m 58s

Intro
0:00
Slope Function of f(x)
0:41
Slope is Zero
0:53
Slope is Positive
1:03
Slope is Negative
1:13
Slope Function of f'(x)
1:31
Slope is Zero
1:42
Slope is Positive
1:48
Slope is Negative
1:54
Lecture Example 1
2:23
Lecture Example 2
8:06
Lecture Example 3
12:36
Additional Example 4
-1
Additional Example 5
-2
Slope Fields for Differential Equations

18m 32s

Intro
0:00
Things to Remember
0:13
Graphic Description
0:42
Lecture Example 1
1:44
Lecture Example 2
6:59
Lecture Example 3
9:46
Additional Example 4
-1
Additional Example 5
-2
Separable Differential Equations

17m 4s

Intro
0:00
Differential Equations
0:10
Focus on Exponential Growth/Decay
0:27
Separating Variables
0:47
Lecture Example 1
1:35
Lecture Example 2
6:41
Lecture Example 3
9:36
Additional Example 4
-1
Additional Example 5
-2
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of College Calculus: Level I
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Practice Questions

  • Download Lecture Slides

  • Table of Contents

  • Related Books

Lecture Comments (3)

0 answers

Post by Meghan Brunet on April 25, 2013

"=...=" is mind blowing and not very helpful.

0 answers

Post by Joanna Nicholson on February 16, 2013

This is a very good question, I asked it myself. I wish someone would answer the questions....

0 answers

Post by Jacqueline Measer on July 11, 2012

Why do you draw two different cylindrical shells? In class only one was drawn.

Volume by Method of Cylindrical Shells

  • I highly recommend starting with a sketch of the functions involved and drawing in a sample radius!
  • I recommend memorizing the formulas but also understanding the geometry that leads to the formulas.
  • If an interval is not given, you may need to set the two functions equal in order to determine the interval involved.
  • Sometimes, geometrical considerations can help you to check your results or even provide a non-calculus way to finish a problem.

Volume by Method of Cylindrical Shells

Find the volume of the solid that results from revolving the area bounded by y = x2, y = 0, and x = 4 around the y-axis.
  • Find the lower bound of the integral (we're already handed the upper bound for x)
  • x2 = 0
  • x = 0
  • V = 2 π∫04 x (x2) dx
  • V = 2π[(x4)/4] |04
  • V = 2π[(44)/4]
V = 128π
Find the volume of the solid that results from revolving the area bound by y = [1/x], x = 1, and x = 2 around the y-axis.
  • V = 2π∫12 x[[1/x] − 0]  dx
  • V = 2π∫12 1  dx
  • V = 2πx |12
  • V = 2π(2 − 1)
V = 2π
Find the volume of the solid that results from revolving the area bound by y = sinx2, y = 0, and x = 1 around the y-axis.
  • x2 = 0
  • x = 0
  • V = 2 π∫01 x[sinx2] dx
  • V = 2 π∫01 x sinx2 dx
  • u = x2
  • du = 2x  dx
  • V = 2 π[1/2] ∫01 sinu  du
  • V = π(−cosx2) |01
  • V = π(−cos1 + cos0)
  • V = π(1 − cos1)
V = π(1 − cos1)
Find the volume of the solid that results from revolving the area bound by y = [1/2] ex2, y = 0, x = 0, and x = 1 around the y-axis.
  • V = 2 π∫01 x [1/2] ex2 dx
  • u = x2
  • du = 2x  dx
  • V = 2π[1/2] [1/2] ∫01 eu du
  • V = [(π)/2] eu |01
  • V = [(π)/2] ex2 |01
  • V = [(π)/2] (e1 − e0)
V = [(π)/2] (e1 − 1)
Find the volume of the solid that results from revolving the area bound by y = √{1 − x2} and y = 0 from x = 0 to x = 1 around the y-axis.
  • The function is undefined for x <−1 and x > 1
  • Let's find the points where the two curves intersect
  • x-axis is y = 0
  • √{1 − x2} = 0
  • 1 − x2 = 0
  • x2 = 1
  • x = −1, 1
  • The intersections and all values of x in between are defined
  • V = (2π) ∫01 x √{1 − x2}  dx
  • u = 1 − x2
  • du = −2x  dx
  • V = 2π[(−1)/2] ∫01 u[1/2] du
  • V = −π[(u[3/2])/([3/2])] |01
  • V = [(−2π)/3] (1 − x2)[3/2] |01
  • V = [(−2π)/3] ( (1 − 1)[3/2] − 1[3/2])
  • We've found the volume of a half-sphere of radius 1
V = [(2 π)/3]
Find the volume of the solid that results from revolving the area bound by y = x3, y = 1, and x = 2 around the y-axis.
  • Find the x value where the two curves intersect for the other bound of the integral
  • x3 = 1
  • x = 1
  • V = 2π∫12 x[x3 − 1]  dx
  • V = 2π∫12 x4 − x  dx
  • V = 2π([(x5)/5] − [(x2)/2]) |12
  • V = 2π([32/5] − 2 − ([1/5] − [1/2]))
V = [(47π)/5]
Find the volume of the solid that results from revolving the area in between by y = [10 lnx/(x2)] and y = 0 from x = 1 to x = 6 around the y-axis.
  • V = 2 π∫16 x [[10 lnx/(x2)]] dx
  • V = 20 π∫16 [lnx/x] dx
  • u = lnx
  • du = [1/x] dx
  • V = 20 π∫16 u  du
  • V = 20π[(u2)/2] |16
  • V = 20π[((lnx)2)/2] |16
  • V = 10 π((ln6)2 − (ln1)2)
V = 10 π(ln6)2
Find the volume of the solid that results from revolving the area bound by y = [1/(√{4 − x2})], x = 0, x = 1 and y = 0 around the y-axis.
  • V = 2 π∫01 x[[1/(√{4 − x2})]] dx
  • u = 4 − x2
  • du = −2x  dx
  • V = 2 π[(−1)/2] ∫01 [1/(√u)] du
  • V = −π∫01 u−[1/2] du
  • V = −π[1/([1/2])] u[1/2] |01
  • V = −2 π(4 − x2)[1/2] |01
  • V = −2π(√3 − √4)
V = 2π(2 − √3)
Find the volume of the solid that results from revolving the area bound by y = 2x, y = 0, and x = 4 around the x-axis.
  • Let's rewrite this in terms of x, since we're rotating about the x-axis
  • y = 2x
  • x = [1/2] y
  • Find the bounds of the integral
  • [1/2] y = 4
  • y = 8
  • V = 2 π∫08 y[4 − [1/2] y]  dy
  • V = 2 π∫08 4y − [1/2] y2  dy
  • V = 2 π(2y2 − [(y3)/6]) |08
  • V = 2 π(2(64) − [(83)/6] − 0)
  • V = 2 π(128 − [512/6])
V = [(256π)/3]
Find the volume of the solid that results from revolving the area bound by x = y3 and x = y2 around the x-axis.
  • y3 = y2
  • y = 0, 1
  • V = 2 π∫01 y[y2 − y3]  dy
  • V = 2 π∫01 y3 − y4  dy
  • V = 2 π([(y4)/4] − [(y5)/5]) |01
  • V = 2 π([1/4] − [1/5] − 0)
V = [(π)/10]

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

Volume by Method of Cylindrical Shells

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Important Equations 0:50
    • Equation 1: Rotation about y-axis
    • Equation 2: Rotation about y-axis (2 curves)
    • Equation 3: Rotation about x-axis
  • Lecture Example 1 8:57
  • Lecture Example 2 14:26
  • Lecture Example 3 18:15
  • Additional Example 4
  • Additional Example 5
Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.