INSTRUCTORS Carleen Eaton Grant Fraser

Dr. Carleen Eaton

Dr. Carleen Eaton

Solving Absolute Value Equations

Slide Duration:

Table of Contents

Section 1: Equations and Inequalities
Expressions and Formulas

22m 23s

Intro
0:00
Order of Operations
0:19
Variable
0:27
Algebraic Expression
0:46
Term
0:57
Example: Algebraic Expression
1:25
Evaluate Inside Grouping Symbols
1:55
Evaluate Powers
2:30
Multiply/Divide Left to Right
2:55
Add/Subtract Left to Right
3:35
Monomials
4:40
Examples of Monomials
4:52
Constant
5:27
Coefficient
5:46
Degree
6:25
Power
7:15
Polynomials
8:02
Examples of Polynomials
8:24
Binomials, Trinomials, Monomials
8:53
Term
9:21
Like Terms
10:02
Formulas
11:00
Example: Pythagorean Theorem
11:15
Example 1: Evaluate the Algebraic Expression
11:50
Example 2: Evaluate the Algebraic Expression
14:38
Example 3: Area of a Triangle
19:11
Example 4: Fahrenheit to Celsius
20:41
Properties of Real Numbers

20m 15s

Intro
0:00
Real Numbers
0:07
Number Line
0:15
Rational Numbers
0:46
Irrational Numbers
2:24
Venn Diagram of Real Numbers
4:03
Irrational Numbers
5:00
Rational Numbers
5:19
Real Number System
5:27
Natural Numbers
5:32
Whole Numbers
5:53
Integers
6:19
Fractions
6:46
Properties of Real Numbers
7:15
Commutative Property
7:34
Associative Property
8:07
Identity Property
9:04
Inverse Property
9:53
Distributive Property
11:03
Example 1: What Set of Numbers?
12:21
Example 2: What Properties Are Used?
13:56
Example 3: Multiplicative Inverse
16:00
Example 4: Simplify Using Properties
17:18
Solving Equations

19m 10s

Intro
0:00
Translations
0:06
Verbal Expressions and Algebraic Expressions
0:13
Example: Sum of Two Numbers
0:19
Example: Square of a Number
1:33
Properties of Equality
3:20
Reflexive Property
3:30
Symmetric Property
3:42
Transitive Property
4:01
Addition Property
5:01
Subtraction Property
5:37
Multiplication Property
6:02
Division Property
6:30
Solving Equations
6:58
Example: Using Properties
7:18
Solving for a Variable
8:25
Example: Solve for Z
8:34
Example 1: Write Algebraic Expression
10:15
Example 2: Write Verbal Expression
11:31
Example 3: Solve the Equation
14:05
Example 4: Simplify Using Properties
17:26
Solving Absolute Value Equations

17m 31s

Intro
0:00
Absolute Value Expressions
0:09
Distance from Zero
0:18
Example: Absolute Value Expression
0:24
Absolute Value Equations
1:50
Example: Absolute Value Equation
2:00
Example: Isolate Expression
3:13
No Solution
3:46
Empty Set
3:58
Example: No Solution
4:12
Number of Solutions
4:46
Check Each Solution
4:57
Example: Two Solutions
5:05
Example: No Solution
6:18
Example: One Solution
6:28
Example 1: Evaluate for X
7:16
Example 2: Write Verbal Expression
9:08
Example 3: Solve the Equation
12:18
Example 4: Simplify Using Properties
13:36
Solving Inequalities

17m 14s

Intro
0:00
Properties of Inequalities
0:08
Addition Property
0:17
Example: Using Numbers
0:30
Subtraction Property
1:03
Example: Using Numbers
1:19
Multiplication Properties
1:44
C>0 (Positive Number)
1:50
Example: Using Numbers
2:05
C<0 (Negative Number)
2:40
Example: Using Numbers
3:10
Division Properties
4:11
C>0 (Positive Number)
4:15
Example: Using Numbers
4:27
C<0 (Negative Number)
5:21
Example: Using Numbers
5:32
Describing the Solution Set
6:10
Example: Set Builder Notation
6:26
Example: Graph (Closed Circle)
7:08
Example: Graph (Open Circle)
7:30
Example 1: Solve the Inequality
7:58
Example 2: Solve the Inequality
9:06
Example 3: Solve the Inequality
10:10
Example 4: Solve the Inequality
13:12
Solving Compound and Absolute Value Inequalities

25m

Intro
0:00
Compound Inequalities
0:08
And and Or
0:13
Example: And
0:22
Example: Or
1:12
And Inequality
1:41
Intersection
1:49
Example: Numbers
2:08
Example: Inequality
2:43
Or Inequality
4:35
Example: Union
4:45
Example: Inequality
5:53
Absolute Value Inequalities
7:19
Definition of Absolute Value
7:33
Examples: Compound Inequalities
8:30
Example: Complex Inequality
12:21
Example 1: Solve the Inequality
12:54
Example 2: Solve the Inequality
17:21
Example 3: Solve the Inequality
18:54
Example 4: Solve the Inequality
22:15
Section 2: Linear Relations and Functions
Relations and Functions

32m 5s

Intro
0:00
Coordinate Plane
0:20
X-Coordinate and Y-Coordinate
0:30
Example: Coordinate Pairs
0:37
Quadrants
1:20
Relations
2:14
Domain and Range
2:19
Set of Ordered Pairs
2:29
As a Table
2:51
Functions
4:21
One Element in Range
4:32
Example: Mapping
4:43
Example: Table and Map
6:26
One-to-One Functions
8:01
Example: One-to-One
8:22
Example: Not One-to-One
9:18
Graphs of Relations
11:01
Discrete and Continuous
11:12
Example: Discrete
11:22
Example: Continous
12:30
Vertical Line Test
14:09
Example: S Curve
14:29
Example: Function
16:15
Equations, Relations, and Functions
17:03
Independent Variable and Dependent Variable
17:16
Function Notation
19:11
Example: Function Notation
19:23
Example 1: Domain and Range
20:51
Example 2: Discrete or Continous
23:03
Example 3: Discrete or Continous
25:53
Example 4: Function Notation
30:05
Linear Equations

14m 46s

Intro
0:00
Linear Equations and Functions
0:07
Linear Equation
0:19
Example: Linear Equation
0:29
Example: Linear Function
1:07
Standard Form
2:02
Integer Constants with No Common Factor
2:08
Example: Standard Form
2:27
Graphing with Intercepts
4:05
X-Intercept and Y-Intercept
4:12
Example: Intercepts
4:26
Example: Graphing
5:14
Example 1: Linear Function
7:53
Example 2: Linear Function
9:10
Example 3: Standard Form
10:04
Example 4: Graph with Intercepts
12:25
Slope

23m 7s

Intro
0:00
Definition of Slope
0:07
Change in Y / Change in X
0:26
Example: Slope of Graph
0:37
Interpretation of Slope
3:07
Horizontal Line (0 Slope)
3:13
Vertical Line (Undefined Slope)
4:52
Rises to Right (Positive Slope)
6:36
Falls to Right (Negative Slope)
6:53
Parallel Lines
7:18
Example: Not Vertical
7:30
Example: Vertical
7:58
Perpendicular Lines
8:31
Example: Perpendicular
8:42
Example 1: Slope of Line
10:32
Example 2: Graph Line
11:45
Example 3: Parallel to Graph
13:37
Example 4: Perpendicular to Graph
17:57
Writing Linear Functions

23m 5s

Intro
0:00
Slope Intercept Form
0:11
m and b
0:28
Example: Graph Using Slope Intercept
0:43
Point Slope Form
2:41
Relation to Slope Formula
3:03
Example: Point Slope Form
4:36
Parallel and Perpendicular Lines
6:28
Review of Parallel and Perpendicular Lines
6:31
Example: Parallel
7:50
Example: Perpendicular
9:58
Example 1: Slope Intercept Form
11:07
Example 2: Slope Intercept Form
13:07
Example 3: Parallel
15:49
Example 4: Perpendicular
18:42
Special Functions

31m 5s

Intro
0:00
Step Functions
0:07
Example: Apple Prices
0:30
Absolute Value Function
4:55
Example: Absolute Value
5:05
Piecewise Functions
9:08
Example: Piecewise
9:27
Example 1: Absolute Value Function
14:00
Example 2: Absolute Value Function
20:39
Example 3: Piecewise Function
22:26
Example 4: Step Function
25:25
Graphing Inequalities

21m 42s

Intro
0:00
Graphing Linear Inequalities
0:07
Shaded Region
0:19
Using Test Points
0:32
Graph Corresponding Linear Function
0:46
Dashed or Solid Lines
0:59
Use Test Point
1:21
Example: Linear Inequality
1:58
Graphing Absolute Value Inequalities
4:50
Graph Corresponding Equations
4:59
Use Test Point
5:20
Example: Absolute Value Inequality
5:38
Example 1: Linear Inequality
9:17
Example 2: Linear Inequality
11:56
Example 3: Linear Inequality
14:29
Example 4: Absolute Value Inequality
17:06
Section 3: Systems of Equations and Inequalities
Solving Systems of Equations by Graphing

17m 13s

Intro
0:00
Systems of Equations
0:09
Example: Two Equations
0:24
Solving by Graphing
0:53
Point of Intersection
1:09
Types of Systems
2:29
Independent (Single Solution)
2:34
Dependent (Infinite Solutions)
3:05
Inconsistent (No Solution)
4:23
Example 1: Solve by Graphing
5:20
Example 2: Solve by Graphing
9:10
Example 3: Solve by Graphing
12:27
Example 4: Solve by Graphing
14:54
Solving Systems of Equations Algebraically

23m 53s

Intro
0:00
Solving by Substitution
0:08
Example: System of Equations
0:36
Solving by Multiplication
7:22
Extra Step of Multiplying
7:38
Example: System of Equations
8:00
Inconsistent and Dependent Systems
11:14
Variables Drop Out
11:48
Inconsistent System (Never True)
12:01
Constant Equals Constant
12:53
Dependent System (Always True)
13:11
Example 1: Solve Algebraically
13:58
Example 2: Solve Algebraically
15:52
Example 3: Solve Algebraically
17:54
Example 4: Solve Algebraically
21:40
Solving Systems of Inequalities By Graphing

27m 12s

Intro
0:00
Solving by Graphing
0:08
Graph Each Inequality
0:25
Overlap
0:35
Corresponding Linear Equations
1:03
Test Point
1:23
Example: System of Inequalities
1:51
No Solution
7:06
Empty Set
7:26
Example: No Solution
7:34
Example 1: Solve by Graphing
10:27
Example 2: Solve by Graphing
13:30
Example 3: Solve by Graphing
17:19
Example 4: Solve by Graphing
23:23
Solving Systems of Equations in Three Variables

28m 53s

Intro
0:00
Solving Systems in Three Variables
0:17
Triple of Values
0:31
Example: Three Variables
0:56
Number of Solutions
5:55
One Solution
6:08
No Solution
6:24
Infinite Solutions
7:06
Example 1: Solve 3 Variables
7:59
Example 2: Solve 3 Variables
13:50
Example 3: Solve 3 Variables
19:54
Example 4: Solve 3 Variables
25:50
Section 4: Matrices
Basic Matrix Concepts

11m 34s

Intro
0:00
What is a Matrix
0:26
Brackets
0:46
Designation
1:21
Element
1:47
Matrix Equations
1:59
Dimensions
2:27
Rows (m) and Columns (n)
2:37
Examples: Dimensions
2:43
Special Matrices
4:22
Row Matrix
4:32
Column Matrix
5:00
Zero Matrix
6:00
Equal Matrices
6:30
Example: Corresponding Elements
6:36
Example 1: Matrix Dimension
8:12
Example 2: Matrix Dimension
9:03
Example 3: Zero Matrix
9:38
Example 4: Row and Column Matrix
10:26
Matrix Operations

21m 36s

Intro
0:00
Matrix Addition
0:18
Same Dimensions
0:25
Example: Adding Matrices
1:04
Matrix Subtraction
3:42
Same Dimensions
3:48
Example: Subtracting Matrices
4:04
Scalar Multiplication
6:08
Scalar Constant
6:24
Example: Multiplying Matrices
6:32
Properties of Matrix Operations
8:23
Commutative Property
8:41
Associative Property
9:08
Distributive Property
9:44
Example 1: Matrix Addition
10:24
Example 2: Matrix Subtraction
11:58
Example 3: Scalar Multiplication
14:23
Example 4: Matrix Properties
16:09
Matrix Multiplication

29m 36s

Intro
0:00
Dimension Requirement
0:17
n = p
0:24
Resulting Product Matrix (m x q)
1:21
Example: Multiplication
1:54
Matrix Multiplication
3:38
Example: Matrix Multiplication
4:07
Properties of Matrix Multiplication
10:46
Associative Property
11:00
Associative Property (Scalar)
11:28
Distributive Property
12:06
Distributive Property (Scalar)
12:30
Example 1: Possible Matrices
13:31
Example 2: Multiplying Matrices
17:08
Example 3: Multiplying Matrices
20:41
Example 4: Matrix Properties
24:41
Determinants

33m 13s

Intro
0:00
What is a Determinant
0:13
Square Matrices
0:23
Vertical Bars
0:41
Determinant of a 2x2 Matrix
1:21
Second Order Determinant
1:37
Formula
1:45
Example: 2x2 Determinant
1:58
Determinant of a 3x3 Matrix
2:50
Expansion by Minors
3:08
Third Order Determinant
3:19
Expanding Row One
4:06
Example: 3x3 Determinant
6:40
Diagonal Method for 3x3 Matrices
13:24
Example: Diagonal Method
13:36
Example 1: Determinant of 2x2
18:59
Example 2: Determinant of 3x3
20:03
Example 3: Determinant of 3x3
25:35
Example 4: Determinant of 3x3
29:22
Cramer's Rule

28m 25s

Intro
0:00
System of Two Equations in Two Variables
0:16
One Variable
0:50
Determinant of Denominator
1:14
Determinants of Numerators
2:23
Example: System of Equations
3:34
System of Three Equations in Three Variables
7:06
Determinant of Denominator
7:17
Determinants of Numerators
7:52
Example 1: Two Equations
8:57
Example 2: Two Equations
13:21
Example 3: Three Equations
17:11
Example 4: Three Equations
23:43
Identity and Inverse Matrices

22m 25s

Intro
0:00
Identity Matrix
0:13
Example: 2x2 Identity Matrix
0:30
Example: 4x4 Identity Matrix
0:50
Properties of Identity Matrices
1:24
Example: Multiplying Identity Matrix
2:52
Matrix Inverses
5:30
Writing Matrix Inverse
6:07
Inverse of a 2x2 Matrix
6:39
Example: 2x2 Matrix
7:31
Example 1: Inverse Matrix
10:18
Example 2: Find the Inverse Matrix
13:04
Example 3: Find the Inverse Matrix
17:53
Example 4: Find the Inverse Matrix
20:44
Solving Systems of Equations Using Matrices

22m 32s

Intro
0:00
Matrix Equations
0:11
Example: System of Equations
0:21
Solving Systems of Equations
4:01
Isolate x
4:16
Example: Using Numbers
5:10
Multiplicative Inverse
5:54
Example 1: Write as Matrix Equation
7:18
Example 2: Use Matrix Equations
9:12
Example 3: Use Matrix Equations
15:06
Example 4: Use Matrix Equations
19:35
Section 5: Quadratic Functions and Inequalities
Graphing Quadratic Functions

31m 48s

Intro
0:00
Quadratic Functions
0:12
A is Zero
0:27
Example: Parabola
0:45
Properties of Parabolas
2:08
Axis of Symmetry
2:11
Vertex
2:32
Example: Parabola
2:48
Minimum and Maximum Values
9:02
Positive or Negative
9:28
Upward or Downward
9:58
Example: Minimum
10:31
Example: Maximum
11:16
Example 1: Axis of Symmetry, Vertex, Graph
12:41
Example 2: Axis of Symmetry, Vertex, Graph
17:25
Example 3: Minimum or Maximum
21:47
Example 4: Minimum or Maximum
27:09
Solving Quadratic Equations by Graphing

27m 3s

Intro
0:00
Quadratic Equations
0:16
Standard Form
0:18
Example: Quadratic Equation
0:47
Solving by Graphing
1:41
Roots (x-Intercepts)
1:48
Example: Number of Solutions
2:12
Estimating Solutions
9:23
Example: Integer Solutions
9:30
Example: Estimating
9:53
Example 1: Solve by Graphing
10:52
Example 2: Solve by Graphing
15:10
Example 1: Solve by Graphing
17:50
Example 1: Solve by Graphing
20:54
Solving Quadratic Equations by Factoring

19m 53s

Intro
0:00
Factoring Techniques
0:15
Greatest Common Factor (GCF)
0:37
Difference of Two Squares
1:48
Perfect Square Trinomials
2:30
General Trinomials
3:09
Zero Product Rule
5:22
Example: Zero Product
5:53
Example 1: Solve by Factoring
7:46
Example 1: Solve by Factoring
9:48
Example 1: Solve by Factoring
12:34
Example 1: Solve by Factoring
15:28
Imaginary and Complex Numbers

35m 45s

Intro
0:00
Properties of Square Roots
0:10
Product Property
0:26
Example: Product Property
0:56
Quotient Property
2:17
Example: Quotient Property
2:35
Imaginary Numbers
3:12
Imaginary i
3:51
Examples: Imaginary Number
4:22
Complex Numbers
7:23
Real Part and Imaginary Part
7:33
Examples: Complex Numbers
7:57
Equality
9:37
Example: Equal Complex Numbers
9:52
Addition and Subtraction
10:12
Examples: Adding Complex Numbers
10:25
Complex Plane
13:32
Horizontal Axis (Real)
13:49
Vertical Axis (Imaginary)
13:59
Example: Labeling
14:11
Multiplication
15:57
Example: FOIL Method
16:03
Division
18:37
Complex Conjugates
18:45
Conjugate Pairs
19:10
Example: Dividing Complex Numbers
20:00
Example 1: Simplify Complex Number
24:50
Example 2: Simplify Complex Number
27:56
Example 3: Multiply Complex Numbers
29:27
Example 3: Dividing Complex Numbers
31:48
Completing the Square

27m 11s

Intro
0:00
Square Root Property
0:12
Example: Perfect Square
0:38
Example: Perfect Square Trinomial
3:00
Completing the Square
4:39
Constant Term
4:50
Example: Complete the Square
5:04
Solve Equations
6:42
Add to Both Sides
6:59
Example: Complete the Square
7:07
Equations Where a Not Equal to 1
10:58
Divide by Coefficient
11:08
Example: Complete the Square
11:24
Complex Solutions
14:05
Real and Imaginary
14:14
Example: Complex Solution
14:35
Example 1: Square Root Property
18:31
Example 2: Complete the Square
19:15
Example 3: Complete the Square
20:40
Example 4: Complete the Square
23:56
Quadratic Formula and the Discriminant

22m 48s

Intro
0:00
Quadratic Formula
0:21
Standard Form
0:29
Example: Quadratic Formula
0:57
One Rational Root
3:00
Example: One Root
3:31
Complex Solutions
6:16
Complex Conjugate
6:28
Example: Complex Solution
7:15
Discriminant
9:42
Positive Discriminant
10:03
Perfect Square (Rational)
10:51
Not Perfect Square (2 Irrational)
11:27
Negative Discriminant
12:28
Zero Discriminant
12:57
Example 1: Quadratic Formula
13:50
Example 2: Quadratic Formula
16:03
Example 3: Quadratic Formula
19:00
Example 4: Discriminant
21:33
Analyzing the Graphs of Quadratic Functions

30m 7s

Intro
0:00
Vertex Form
0:12
H and K
0:32
Axis of Symmetry
0:36
Vertex
0:42
Example: Origin
1:00
Example: k = 2
2:12
Example: h = 1
4:27
Significance of Coefficient a
7:13
Example: |a| > 1
7:25
Example: |a| < 1
8:18
Example: |a| > 0
8:51
Example: |a| < 0
9:05
Writing Quadratic Equations in Vertex Form
10:22
Standard Form to Vertex Form
10:35
Example: Standard Form
11:02
Example: a Term Not 1
14:42
Example 1: Vertex Form
19:47
Example 2: Vertex Form
22:09
Example 3: Vertex Form
24:32
Example 4: Vertex Form
28:23
Graphing and Solving Quadratic Inequalities

27m 5s

Intro
0:00
Graphing Quadratic Inequalities
0:11
Test Point
0:18
Example: Quadratic Inequality
0:29
Solving Quadratic Inequalities
3:57
Example: Parameter
4:24
Example 1: Graph Inequality
11:16
Example 2: Solve Inequality
14:27
Example 3: Graph Inequality
19:14
Example 4: Solve Inequality
23:48
Section 6: Polynomial Functions
Properties of Exponents

19m 29s

Intro
0:00
Simplifying Exponential Expressions
0:09
Monomial Simplest Form
0:19
Negative Exponents
1:07
Examples: Simple
1:34
Properties of Exponents
3:06
Negative Exponents
3:13
Mutliplying Same Base
3:24
Dividing Same Base
3:45
Raising Power to a Power
4:33
Parentheses (Multiplying)
5:11
Parentheses (Dividing)
5:47
Raising to 0th Power
6:15
Example 1: Simplify Exponents
7:59
Example 2: Simplify Exponents
10:41
Example 3: Simplify Exponents
14:11
Example 4: Simplify Exponents
18:04
Operations on Polynomials

13m 27s

Intro
0:00
Adding and Subtracting Polynomials
0:13
Like Terms and Like Monomials
0:23
Examples: Adding Monomials
1:14
Multiplying Polynomials
3:40
Distributive Property
3:44
Example: Monomial by Polynomial
4:06
Example 1: Simplify Polynomials
5:47
Example 2: Simplify Polynomials
6:28
Example 3: Simplify Polynomials
8:38
Example 4: Simplify Polynomials
10:47
Dividing Polynomials

31m 11s

Intro
0:00
Dividing by a Monomial
0:13
Example: Numbers
0:26
Example: Polynomial by a Monomial
1:18
Long Division
2:28
Remainder Term
2:41
Example: Dividing with Numbers
3:04
Example: With Polynomials
5:01
Example: Missing Terms
7:58
Synthetic Division
11:44
Restriction
12:04
Example: Divisor in Form
12:20
Divisor in Synthetic Division
15:54
Example: Coefficient to 1
16:07
Example 1: Divide Polynomials
17:10
Example 2: Divide Polynomials
19:08
Example 3: Synthetic Division
21:42
Example 4: Synthetic Division
25:09
Polynomial Functions

22m 30s

Intro
0:00
Polynomial in One Variable
0:13
Leading Coefficient
0:27
Example: Polynomial
1:18
Degree
1:31
Polynomial Functions
2:57
Example: Function
3:13
Function Values
3:33
Example: Numerical Values
3:53
Example: Algebraic Expressions
5:11
Zeros of Polynomial Functions
5:50
Odd Degree
6:04
Even Degree
7:29
End Behavior
8:28
Even Degrees
9:09
Example: Leading Coefficient +/-
9:23
Odd Degrees
12:51
Example: Leading Coefficient +/-
13:00
Example 1: Degree and Leading Coefficient
15:03
Example 2: Polynomial Function
15:56
Example 3: Polynomial Function
17:34
Example 4: End Behavior
19:53
Analyzing Graphs of Polynomial Functions

33m 29s

Intro
0:00
Graphing Polynomial Functions
0:11
Example: Table and End Behavior
0:39
Location Principle
4:43
Zero Between Two Points
5:03
Example: Location Principle
5:21
Maximum and Minimum Points
8:40
Relative Maximum and Relative Minimum
9:16
Example: Number of Relative Max/Min
11:11
Example 1: Graph Polynomial Function
11:57
Example 2: Graph Polynomial Function
16:19
Example 3: Graph Polynomial Function
23:27
Example 4: Graph Polynomial Function
28:35
Solving Polynomial Functions

21m 10s

Intro
0:00
Factoring Polynomials
0:06
Greatest Common Factor (GCF)
0:25
Difference of Two Squares
1:14
Perfect Square Trinomials
2:07
General Trinomials
2:57
Grouping
4:32
Sum and Difference of Two Cubes
6:03
Examples: Two Cubes
6:14
Quadratic Form
8:22
Example: Quadratic Form
8:44
Example 1: Factor Polynomial
12:03
Example 2: Factor Polynomial
13:54
Example 3: Quadratic Form
15:33
Example 4: Solve Polynomial Function
17:24
Remainder and Factor Theorems

31m 21s

Intro
0:00
Remainder Theorem
0:07
Checking Work
0:22
Dividend and Divisor in Theorem
1:12
Example: f(a)
2:05
Synthetic Substitution
5:43
Example: Polynomial Function
6:15
Factor Theorem
9:54
Example: Numbers
10:16
Example: Confirm Factor
11:27
Factoring Polynomials
14:48
Example: 3rd Degree Polynomial
15:07
Example 1: Remainder Theorem
19:17
Example 2: Other Factors
21:57
Example 3: Remainder Theorem
25:52
Example 4: Other Factors
28:21
Roots and Zeros

31m 27s

Intro
0:00
Number of Roots
0:08
Not Nature of Roots
0:18
Example: Real and Complex Roots
0:25
Descartes' Rule of Signs
2:05
Positive Real Roots
2:21
Example: Positve
2:39
Negative Real Roots
5:44
Example: Negative
6:06
Finding the Roots
9:59
Example: Combination of Real and Complex
10:07
Conjugate Roots
13:18
Example: Conjugate Roots
13:50
Example 1: Solve Polynomial
16:03
Example 2: Solve Polynomial
18:36
Example 3: Possible Combinations
23:13
Example 4: Possible Combinations
27:11
Rational Zero Theorem

31m 16s

Intro
0:00
Equation
0:08
List of Possibilities
0:16
Equation with Constant and Leading Coefficient
1:04
Example: Rational Zero
2:46
Leading Coefficient Equal to One
7:19
Equation with Leading Coefficient of One
7:34
Example: Coefficient Equal to 1
8:45
Finding Rational Zeros
12:58
Division with Remainder Zero
13:32
Example 1: Possible Rational Zeros
14:20
Example 2: Possible Rational Zeros
16:02
Example 3: Possible Rational Zeros
19:58
Example 4: Find All Zeros
22:06
Section 7: Radical Expressions and Inequalities
Operations on Functions

34m 30s

Intro
0:00
Arithmetic Operations
0:07
Domain
0:16
Intersection
0:24
Denominator is Zero
0:49
Example: Operations
1:02
Composition of Functions
7:18
Notation
7:48
Right to Left
8:18
Example: Composition
8:48
Composition is Not Commutative
17:23
Example: Not Commutative
17:51
Example 1: Function Operations
20:55
Example 2: Function Operations
24:34
Example 3: Compositions
27:51
Example 4: Function Operations
31:09
Inverse Functions and Relations

22m 42s

Intro
0:00
Inverse of a Relation
0:14
Example: Ordered Pairs
0:56
Inverse of a Function
3:24
Domain and Range Switched
3:52
Example: Inverse
4:28
Procedure to Construct an Inverse Function
6:42
f(x) to y
6:42
Interchange x and y
6:59
Solve for y
7:06
Write Inverse f(x) for y
7:14
Example: Inverse Function
7:25
Example: Inverse Function 2
8:48
Inverses and Compositions
10:44
Example: Inverse Composition
11:46
Example 1: Inverse Relation
14:49
Example 2: Inverse of Function
15:40
Example 3: Inverse of Function
17:06
Example 4: Inverse Functions
18:55
Square Root Functions and Inequalities

30m 4s

Intro
0:00
Square Root Functions
0:07
Examples: Square Root Function
0:16
Example: Not Square Root Function
0:46
Radicand
1:12
Example: Restriction
1:31
Graphing Square Root Functions
3:42
Example: Graphing
3:49
Square Root Inequalities
8:47
Same Technique
9:00
Example: Square Root Inequality
9:20
Example 1: Graph Square Root Function
15:19
Example 2: Graph Square Root Function
18:03
Example 3: Graph Square Root Function
22:41
Example 4: Square Root Inequalities
25:37
nth Roots

20m 46s

Intro
0:00
Definition of the nth Root
0:07
Example: 5th Root
0:20
Example: 6th Root
0:51
Principal nth Root
1:39
Example: Principal Roots
2:06
Using Absolute Values
5:58
Example: Square Root
6:18
Example: 6th Root
8:40
Example: Negative
10:15
Example 1: Simplify Radicals
12:23
Example 2: Simplify Radicals
13:29
Example 3: Simplify Radicals
16:07
Example 4: Simplify Radicals
18:18
Operations with Radical Expressions

41m 11s

Intro
0:00
Properties of Radicals
0:16
Quotient Property
0:29
Example: Quotient
1:00
Example: Product Property
1:47
Simplifying Radical Expressions
3:24
Radicand No nth Powers
3:47
Radicand No Fractions
6:33
No Radicals in Denominator
7:16
Rationalizing Denominators
8:27
Example: Radicand nth Power
9:05
Conjugate Radical Expressions
11:47
Conjugates
12:07
Example: Conjugate Radical Expression
13:11
Adding and Subtracting Radicals
16:12
Same Index, Same Radicand
16:20
Example: Like Radicals
16:28
Multiplying Radicals
19:04
Distributive Property
19:10
Example: Multiplying Radicals
19:20
Example 1: Simplify Radical
24:11
Example 2: Simplify Radicals
28:43
Example 3: Simplify Radicals
32:00
Example 4: Simplify Radical
36:34
Rational Exponents

30m 45s

Intro
0:00
Definition 1
0:20
Example: Using Numbers
0:39
Example: Non-Negative
2:46
Example: Odd
3:34
Definition 2
4:32
Restriction
4:52
Example: Relate to Definition 1
5:04
Example: m Not 1
5:31
Simplifying Expressions
7:53
Multiplication
8:31
Division
9:29
Multiply Exponents
10:08
Raised Power
11:05
Zero Power
11:29
Negative Power
11:49
Simplified Form
13:52
Complex Fraction
14:16
Negative Exponents
14:40
Example: More Complicated
15:14
Example 1: Write as Radical
19:03
Example 2: Write with Rational Exponents
20:40
Example 3: Complex Fraction
22:09
Example 4: Complex Fraction
26:22
Solving Radical Equations and Inequalities

31m 27s

Intro
0:00
Radical Equations
0:11
Variables in Radicands
0:22
Example: Radical Equation
1:06
Example: Complex Equation
2:42
Extraneous Roots
7:21
Squaring Technique
7:35
Double Check
7:44
Example: Extraneous
8:21
Eliminating nth Roots
10:04
Isolate and Raise Power
10:14
Example: nth Root
10:27
Radical Inequalities
11:27
Restriction: Index is Even
11:53
Example: Radical Inequality
12:29
Example 1: Solve Radical Equation
15:41
Example 2: Solve Radical Equation
17:44
Example 3: Solve Radical Inequality
20:24
Example 4: Solve Radical Equation
24:34
Section 8: Rational Equations and Inequalities
Multiplying and Dividing Rational Expressions

40m 54s

Intro
0:00
Simplifying Rational Expressions
0:22
Algebraic Fraction
0:29
Examples: Rational Expressions
0:49
Example: GCF
1:33
Example: Simplify Rational Expression
2:26
Factoring -1
4:04
Example: Simplify with -1
4:19
Multiplying and Dividing Rational Expressions
6:59
Multiplying and Dividing
7:28
Example: Multiplying Rational Expressions
8:36
Example: Dividing Rational Expressions
11:20
Factoring
14:01
Factoring Polynomials
14:19
Example: Factoring
14:35
Complex Fractions
18:22
Example: Numbers
18:37
Example: Algebraic Complex Fractions
19:25
Example 1: Simplify Rational Expression
25:56
Example 2: Simplify Rational Expression
29:34
Example 3: Simplify Rational Expression
31:39
Example 4: Simplify Rational Expression
37:50
Adding and Subtracting Rational Expressions

55m 4s

Intro
0:00
Least Common Multiple (LCM)
0:27
Examples: LCM of Numbers
0:43
Example: LCM of Polynomials
4:02
Adding and Subtracting
7:55
Least Common Denominator (LCD)
8:07
Example: Numbers
8:17
Example: Rational Expressions
11:03
Equivalent Fractions
15:22
Simplifying Complex Fractions
21:19
Example: Previous Lessons
21:36
Example: More Complex
22:53
Example 1: Find LCM
28:30
Example 2: Add Rational Expressions
31:44
Example 3: Subtract Rational Expressions
39:18
Example 4: Simplify Rational Expression
38:26
Graphing Rational Functions

57m 13s

Intro
0:00
Rational Functions
0:18
Restriction
0:34
Example: Rational Function
0:51
Breaks in Continuity
2:52
Example: Continuous Function
3:10
Discontinuities
3:30
Example: Excluded Values
4:37
Graphs and Discontinuities
5:02
Common Binomial Factor (Hole)
5:08
Example: Common Factor
5:31
Asymptote
10:06
Example: Vertical Asymptote
11:08
Horizontal Asymptotes
20:00
Example: Horizontal Asymptote
20:25
Example 1: Holes and Vertical Asymptotes
26:12
Example 2: Graph Rational Faction
28:35
Example 3: Graph Rational Faction
39:23
Example 4: Graph Rational Faction
47:28
Direct, Joint, and Inverse Variation

20m 21s

Intro
0:00
Direct Variation
0:07
Constant of Variation
0:25
Graph of Constant Variation
1:26
Slope is Constant k
1:35
Example: Straight Lines
1:41
Joint Variation
2:48
Three Variables
2:52
Inverse Variation
3:38
Rewritten Form
3:52
Examples in Biology
4:22
Graph of Inverse Variation
4:51
Asymptotes are Axes
5:12
Example: Inverse Variation
5:40
Proportions
10:11
Direct Variation
10:25
Inverse Variation
11:32
Example 1: Type of Variation
12:42
Example 2: Direct Variation
14:13
Example 3: Joint Variation
16:24
Example 4: Graph Rational Faction
18:50
Solving Rational Equations and Inequalities

55m 14s

Intro
0:00
Rational Equations
0:15
Example: Algebraic Fraction
0:26
Least Common Denominator
0:49
Example: Simple Rational Equation
1:22
Example: Solve Rational Equation
5:40
Extraneous Solutions
9:31
Doublecheck
10:00
No Solution
10:38
Example: Extraneous
10:44
Rational Inequalities
14:01
Excluded Values
14:31
Solve Related Equation
14:49
Find Intervals
14:58
Use Test Values
15:25
Example: Rational Inequality
15:51
Example: Rational Inequality 2
17:07
Example 1: Rational Equation
28:50
Example 2: Rational Equation
33:51
Example 3: Rational Equation
38:19
Example 4: Rational Inequality
46:49
Section 9: Exponential and Logarithmic Relations
Exponential Functions

35m 58s

Intro
0:00
What is an Exponential Function?
0:12
Restriction on b
0:31
Base
0:46
Example: Exponents as Bases
0:56
Variables as Exponents
1:12
Example: Exponential Function
1:50
Graphing Exponential Functions
2:33
Example: Using Table
2:49
Properties
11:52
Continuous and One to One
12:00
Domain is All Real Numbers
13:14
X-Axis Asymptote
13:55
Y-Intercept
14:02
Reflection Across Y-Axis
14:31
Growth and Decay
15:06
Exponential Growth
15:10
Real Life Examples
15:41
Example: Growth
15:52
Example: Decay
16:12
Real Life Examples
16:30
Equations
17:32
Bases are Same
18:05
Examples: Variables as Exponents
18:20
Inequalities
21:29
Property
21:51
Example: Inequality
22:37
Example 1: Graph Exponential Function
24:05
Example 2: Growth or Decay
27:50
Example 3: Exponential Equation
29:31
Example 4: Exponential Inequality
32:54
Logarithms and Logarithmic Functions

45m 54s

Intro
0:00
What are Logarithms?
0:08
Restrictions
0:15
Written Form
0:26
Logarithms are Exponents
0:52
Example: Logarithms
1:49
Logarithmic Functions
5:14
Same Restrictions
5:30
Inverses
5:53
Example: Logarithmic Function
6:24
Graph of the Logarithmic Function
9:20
Example: Using Table
9:35
Properties
15:09
Continuous and One to One
15:14
Domain
15:36
Range
15:56
Y-Axis is Asymptote
16:02
X Intercept
16:12
Inverse Property
16:57
Compositions of Functions
17:10
Equations
18:30
Example: Logarithmic Equation
19:13
Inequalities
20:36
Properties
20:47
Example: Logarithmic Inequality
21:40
Equations with Logarithms on Both Sides
24:43
Property
24:51
Example: Both Sides
25:23
Inequalities with Logarithms on Both Sides
26:52
Property
27:02
Example: Both Sides
28:05
Example 1: Solve Log Equation
31:52
Example 2: Solve Log Equation
33:53
Example 3: Solve Log Equation
36:15
Example 4: Solve Log Inequality
39:19
Properties of Logarithms

28m 43s

Intro
0:00
Product Property
0:08
Example: Product
0:46
Quotient Property
2:40
Example: Quotient
2:59
Power Property
3:51
Moved Exponent
4:07
Example: Power
4:37
Equations
5:15
Example: Use Properties
5:58
Example 1: Simplify Log
11:17
Example 2: Single Log
15:54
Example 3: Solve Log Equation
18:48
Example 4: Solve Log Equation
22:13
Common Logarithms

25m 23s

Intro
0:00
What are Common Logarithms?
0:10
Real World Applications
0:16
Base Not Written
0:27
Example: Base 10
0:39
Equations
1:47
Example: Same Base
1:56
Example: Different Base
2:37
Inequalities
6:07
Multiplying/Dividing Inequality
6:21
Example: Log Inequality
6:54
Change of Base
12:45
Base 10
13:24
Example: Change of Base
14:05
Example 1: Log Equation
15:21
Example 2: Common Logs
17:13
Example 3: Log Equation
18:22
Example 4: Log Inequality
21:52
Base e and Natural Logarithms

21m 14s

Intro
0:00
Number e
0:09
Natural Base
0:21
Growth/Decay
0:33
Example: Exponential Function
0:53
Natural Logarithms
1:11
ln x
1:19
Inverse and Identity Function
1:39
Example: Inverse Composition
1:55
Equations and Inequalities
4:39
Extraneous Solutions
5:30
Examples: Natural Log Equations
5:48
Example 1: Natural Log Equation
9:08
Example 2: Natural Log Equation
10:37
Example 3: Natural Log Inequality
16:54
Example 4: Natural Log Inequality
18:16
Exponential Growth and Decay

24m 30s

Intro
0:00
Decay
0:17
Decreases by Fixed Percentage
0:23
Rate of Decay
0:56
Example: Finance
1:34
Scientific Model of Decay
3:37
Exponential Decay
3:45
Radioactive Decay
4:13
Example: Half Life
5:33
Growth
9:06
Increases by Fixed Percentage
9:18
Example: Finance
10:09
Scientific Model of Growth
11:35
Population Growth
12:04
Example: Growth
12:20
Example 1: Computer Price
14:00
Example 2: Stock Price
15:46
Example 3: Medicine Disintegration
19:10
Example 4: Population Growth
22:33
Section 10: Conic Sections
Midpoint and Distance Formulas

32m 42s

Intro
0:00
Midpoint Formula
0:15
Example: Midpoint
0:30
Distance Formula
2:30
Example: Distance
2:52
Example 1: Midpoint and Distance
4:58
Example 2: Midpoint and Distance
8:07
Example 3: Median Length
18:51
Example 4: Perimeter and Area
23:36
Parabolas

41m 27s

Intro
0:00
What is a Parabola?
0:20
Definition of a Parabola
0:29
Focus
0:59
Directrix
1:15
Axis of Symmetry
3:08
Vertex
3:33
Minimum or Maximum
3:44
Standard Form
4:59
Horizontal Parabolas
5:08
Vertex Form
5:19
Upward or Downward
5:41
Example: Standard Form
6:06
Graphing Parabolas
8:31
Shifting
8:51
Example: Completing the Square
9:22
Symmetry and Translation
12:18
Example: Graph Parabola
12:40
Latus Rectum
17:13
Length
18:15
Example: Latus Rectum
18:35
Horizontal Parabolas
18:57
Not Functions
20:08
Example: Horizontal Parabola
21:21
Focus and Directrix
24:11
Horizontal
24:48
Example 1: Parabola Standard Form
25:12
Example 2: Graph Parabola
30:00
Example 3: Graph Parabola
33:13
Example 4: Parabola Equation
37:28
Circles

21m 3s

Intro
0:00
What are Circles?
0:08
Example: Equidistant
0:17
Radius
0:32
Equation of a Circle
0:44
Example: Standard Form
1:11
Graphing Circles
1:47
Example: Circle
1:56
Center Not at Origin
3:07
Example: Completing the Square
3:51
Example 1: Equation of Circle
6:44
Example 2: Center and Radius
11:51
Example 3: Radius
15:08
Example 4: Equation of Circle
16:57
Ellipses

46m 51s

Intro
0:00
What Are Ellipses?
0:11
Foci
0:23
Properties of Ellipses
1:43
Major Axis, Minor Axis
1:47
Center
1:54
Length of Major Axis and Minor Axis
3:21
Standard Form
5:33
Example: Standard Form of Ellipse
6:09
Vertical Major Axis
9:14
Example: Vertical Major Axis
9:46
Graphing Ellipses
12:51
Complete the Square and Symmetry
13:00
Example: Graphing Ellipse
13:16
Equation with Center at (h, k)
19:57
Horizontal and Vertical
20:14
Difference
20:27
Example: Center at (h, k)
20:55
Example 1: Equation of Ellipse
24:05
Example 2: Equation of Ellipse
27:57
Example 3: Equation of Ellipse
32:32
Example 4: Graph Ellipse
38:27
Hyperbolas

38m 15s

Intro
0:00
What are Hyperbolas?
0:12
Two Branches
0:18
Foci
0:38
Properties
2:00
Transverse Axis and Conjugate Axis
2:06
Vertices
2:46
Length of Transverse Axis
3:14
Distance Between Foci
3:31
Length of Conjugate Axis
3:38
Standard Form
5:45
Vertex Location
6:36
Known Points
6:52
Vertical Transverse Axis
7:26
Vertex Location
7:50
Asymptotes
8:36
Vertex Location
8:56
Rectangle
9:28
Diagonals
10:29
Graphing Hyperbolas
12:58
Example: Hyperbola
13:16
Equation with Center at (h, k)
16:32
Example: Center at (h, k)
17:21
Example 1: Equation of Hyperbola
19:20
Example 2: Equation of Hyperbola
22:48
Example 3: Graph Hyperbola
26:05
Example 4: Equation of Hyperbola
36:29
Conic Sections

18m 43s

Intro
0:00
Conic Sections
0:16
Double Cone Sections
0:24
Standard Form
1:27
General Form
1:37
Identify Conic Sections
2:16
B = 0
2:50
X and Y
3:22
Identify Conic Sections, Cont.
4:46
Parabola
5:17
Circle
5:51
Ellipse
6:31
Hyperbola
7:10
Example 1: Identify Conic Section
8:01
Example 2: Identify Conic Section
11:03
Example 3: Identify Conic Section
11:38
Example 4: Identify Conic Section
14:50
Solving Quadratic Systems

47m 4s

Intro
0:00
Linear Quadratic Systems
0:22
Example: Linear Quadratic System
0:45
Solutions
2:49
Graphs of Possible Solutions
3:10
Quadratic Quadratic System
4:10
Example: Elimination
4:21
Solutions
11:39
Example: 0, 1, 2, 3, 4 Solutions
11:50
Systems of Quadratic Inequalities
12:48
Example: Quadratic Inequality
13:09
Example 1: Solve Quadratic System
21:42
Example 2: Solve Quadratic System
29:13
Example 3: Solve Quadratic System
35:02
Example 4: Solve Quadratic Inequality
40:29
Section 11: Sequences and Series
Arithmetic Sequences

21m 16s

Intro
0:00
Sequences
0:10
General Form of Sequence
0:16
Example: Finite/Infinite Sequences
0:33
Arithmetic Sequences
0:28
Common Difference
2:41
Example: Arithmetic Sequence
2:50
Formula for the nth Term
3:51
Example: nth Term
4:32
Equation for the nth Term
6:37
Example: Using Formula
6:56
Arithmetic Means
9:47
Example: Arithmetic Means
10:16
Example 1: nth Term
12:38
Example 2: Arithmetic Means
13:49
Example 3: Arithmetic Means
16:12
Example 4: nth Term
18:26
Arithmetic Series

21m 36s

Intro
0:00
What are Arithmetic Series?
0:11
Common Difference
0:28
Example: Arithmetic Sequence
0:43
Example: Arithmetic Series
1:09
Finite/Infinite Series
1:36
Sum of Arithmetic Series
2:27
Example: Sum
3:21
Sigma Notation
5:53
Index
6:14
Example: Sigma Notation
7:14
Example 1: First Term
9:00
Example 2: Three Terms
10:52
Example 3: Sum of Series
14:14
Example 4: Sum of Series
18:13
Geometric Sequences

23m 3s

Intro
0:00
Geometric Sequences
0:11
Common Difference
0:38
Common Ratio
1:08
Example: Geometric Sequence
2:38
nth Term of a Geometric Sequence
4:41
Example: nth Term
4:56
Geometric Means
6:51
Example: Geometric Mean
7:09
Example 1: 9th Term
12:04
Example 2: Geometric Means
15:18
Example 3: nth Term
18:32
Example 4: Three Terms
20:59
Geometric Series

22m 43s

Intro
0:00
What are Geometric Series?
0:11
List of Numbers
0:24
Example: Geometric Series
1:12
Sum of Geometric Series
2:16
Example: Sum of Geometric Series
2:41
Sigma Notation
4:21
Lower Index, Upper Index
4:38
Example: Sigma Notation
4:57
Another Sum Formula
6:08
Example: n Unknown
6:28
Specific Terms
7:41
Sum Formula
7:56
Example: Specific Term
8:11
Example 1: Sum of Geometric Series
10:02
Example 2: Sum of 8 Terms
14:15
Example 3: Sum of Geometric Series
18:23
Example 4: First Term
20:16
Infinite Geometric Series

18m 32s

Intro
0:00
What are Infinite Geometric Series
0:10
Example: Finite
0:29
Example: Infinite
0:51
Partial Sums
1:09
Formula
1:37
Sum of an Infinite Geometric Series
2:39
Convergent Series
2:58
Example: Sum of Convergent Series
3:28
Sigma Notation
7:31
Example: Sigma
8:17
Repeating Decimals
8:42
Example: Repeating Decimal
8:53
Example 1: Sum of Infinite Geometric Series
12:15
Example 2: Repeating Decimal
13:24
Example 3: Sum of Infinite Geometric Series
15:14
Example 4: Repeating Decimal
16:48
Recursion and Special Sequences

14m 34s

Intro
0:00
Fibonacci Sequence
0:05
Background of Fibonacci
0:23
Recursive Formula
0:37
Fibonacci Sequence
0:52
Example: Recursive Formula
2:18
Iteration
3:49
Example: Iteration
4:30
Example 1: Five Terms
7:08
Example 2: Three Terms
9:00
Example 3: Five Terms
10:38
Example 4: Three Iterates
12:41
Binomial Theorem

48m 30s

Intro
0:00
Pascal's Triangle
0:06
Expand Binomial
0:13
Pascal's Triangle
4:26
Properties
6:52
Example: Properties of Binomials
6:58
Factorials
9:11
Product
9:28
Example: Factorial
9:45
Binomial Theorem
11:08
Example: Binomial Theorem
13:48
Finding a Specific Term
18:36
Example: Specific Term
19:26
Example 1: Expand
24:39
Example 2: Fourth Term
30:26
Example 3: Five Terms
36:13
Example 4: Three Iterates
45:07
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Algebra 2
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Practice Questions

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (15)

1 answer

Last reply by: Dr Carleen Eaton
Wed Jan 1, 2014 12:44 AM

Post by Myriam Bouhenguel on December 22, 2013

In the example you gave in the beginning about the 3 |5x+4| = 6, instead of dividing the 3 to both sides can I also distribute the 3 with the 5x+4 inside the absolute value and solve the rest of the equation?

1 answer

Last reply by: DJ Sai
Sat Dec 8, 2018 3:29 PM

Post by julius mogyorossy on July 18, 2013

Did Dr. Carleen get the wrong answer for example one, it seems so to me, but I am defective, but soon I shall be perfect, can't wait, today really proved the truth of it.

2 answers

Last reply by: Manfred Berger
Tue May 28, 2013 6:17 AM

Post by Su Jung Leem on August 7, 2012

Dr. Eaton, I have the same question as the girl above. If you actually solved the equation, how can there be invalid result in the last example? I'm a bit confused

1 answer

Last reply by: Dr Carleen Eaton
Tue Jul 10, 2012 11:02 PM

Post by Sayaka Carpenter on July 9, 2012

Dr. Eaton, if you get the answer by solving the equation, how could it not be valid?

1 answer

Last reply by: Dr Carleen Eaton
Thu Feb 23, 2012 11:35 AM

Post by julius mogyorossy on February 13, 2012

Dr. Eaton, I could not understand Absolute Value Equations when Grant talked about them, but you made me understand them, thanks. I was troubled by some things you did in Ex.1, but maybe in time I shall understand them. Thanks.

3 answers

Last reply by: Venugopal Ghanta
Mon Jun 27, 2011 10:26 AM

Post by Jonathan Bergan on July 29, 2010

Dr. Carleen Eaton, could you further explain example IV in regards to why you multiplied by -1? Thanks

Solving Absolute Value Equations

  • The absolute value of a number is its distance from 0.
  • The absolute value of x is equal to x if x is greater than or equal to 0; otherwise, it is equal to –x.
  • Use this definition of absolute value to solve equations involving absolute values. Split the original equation |x| = a into two different possibilities, or cases, based on the definition: x = a and x = −a. Solve each one and combine the solutions.
  • Some equations have no solutions.
  • Always check all of the solutions. Some may not satisfy the original equation and must be discarded.

Solving Absolute Value Equations

Evaluate for x = − 5 |2x − 1| + |x − 2| − 2| − x|
  • Plug in x = − 5 into the expression
  • |2( − 5) − 1| + |( − 5) − 2| − 2| − ( − 5)|
  • Simplify
  • | − 11| + | − 7| − 2|5|
  • 11 + 7 − 2(5)
  • 11 + 7 − 10
= 8
Evaluate for x = 2 | − x| + 2|x − 5| − |2 − x|
  • Plug - in x = 2 in to the expression
  • | − (2)| + 2|(2) − 5| − |2 − (2)|
  • Simplify
  • | − 2| + 2| − 3| − |0|
  • 2 + 2(3)
= 8
Solve: 2|4x − 2| = 36
  • Divide both sides by 2
  • |4x − 2| = 18
  • Break the absolute value into two equations and solve for x
  • 4x - 2 = 18
    4x = 20 4x=-16
    x = 5
  • 4x -2 = -18
    4x = -16
    x = -4
x = 5 and x = -4
Solve: − 3|5x − 3| = − 9
  • Divide both sides by − 3
  • |5x − 3| = 3
  • Break the absolute value into two equations and solve for x
  • 5x − 3 = 3
    5x = 6
    x = [6/5]
  • 5x − 3 = − 3
    5x = 0
    x = 0
x = [6/5] and x = 0
Solve: − 2| − 9b| = − 54
  • Divide both sides by − 2
  • | − 9b| = 27
  • Break the absolute value into two equations and solve for x
  • − 9b = 27
    − 9b = 27 b = −3
  • − 9b = − 27
    −9b = −27
    b = 3
b = −3 and b = 3
Solve: 2 − 3|2n − 7| = − 16
  • Subtract 2 from both sides
  • − 3|2n − 7| = − 18
  • Divide both sides by − 3
  • |2n − 7| = 6
  • Break the absolute value into two equations and solve for x
  • 2n − 7 = 6
    2n = 13
    n = [13/2]
  • 2n − 7 = − 6
    2n = 1
    n = [1/2]
n = [13/2] and n = [1/2]
Solve:
10| − 8 + 2a| + 10 = 30
  • Subtract 10 from both sides
  • 10| − 8 + 2a| = 20
  • Divide both sides by 10
  • | − 8 + 2a| = 2
  • Break the absolute value into two equations and solve for x
  • − 8 + 2a = 2
    2a = 10
    a = 5
  • − 8 + 2a = − 2
    2a = 6
    a = 3
a = 5 and a = 3
Solve: |4x − 5| = − 10
  • No Solution.
Recall that the absolute value represents the distance between a number and zero. Thefore, distance cannot be negative, for this reason, this problem has no solution.
Solve: − 5|6x + 10| = 20
  • Divide both sides by − 5
  • |6x + 10| = − 4
  • No Solution.
Once again, the distance between a number and zero is always positivie. Therefore, there is no solution.
Solve: − 5|6x + 10| − 30 = − 20
  • Add 30 to both sides
  • − 5|6x + 10| = 10
  • Divide both sides by − 5
  • |6x + 10| = − 2
  • No solution.
The distance between a number and zero is always positive. A negative solution means there is no answer to the absolute value equation.

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

Solving Absolute Value Equations

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Absolute Value Expressions 0:09
    • Distance from Zero
    • Example: Absolute Value Expression
  • Absolute Value Equations 1:50
    • Example: Absolute Value Equation
    • Example: Isolate Expression
  • No Solution 3:46
    • Empty Set
    • Example: No Solution
  • Number of Solutions 4:46
    • Check Each Solution
    • Example: Two Solutions
    • Example: No Solution
    • Example: One Solution
  • Example 1: Evaluate for X 7:16
  • Example 2: Write Verbal Expression 9:08
  • Example 3: Solve the Equation 12:18
  • Example 4: Simplify Using Properties 13:36

Transcription: Solving Absolute Value Equations

Welcome to Educator.com.0000

In today's lesson, we are going to be covering solving absolute value equations.0002

Recall that the absolute value x, written as |x| (this is the symbol for absolute value), is the distance from x to 0 on a number line.0009

For example, if you have the absolute value of x equals three, what you are saying is0022

that the absolute value of this number is 3 away from 0 on the number line (1, 2, 3).0036

OK, so looking at this: if I go from 0 to 3, this is 3 units away from 0 on the number line; therefore, x could equal 3,0052

because 3 is 3 away from 0 on the number line.0070

However, consider this: -3 is also 3 units away from 0 on the number line.0074

So, x could also equal -3; so, if the absolute value of x equals 3, x could be 3 (since the absolute value of 3 is 3),0081

and x could be -3 (since the absolute value of -3 is also 3).0093

Knowing this, and really understanding this definition, will allow you to solve equations involving absolute value.0102

Again, absolute value equations: you can solve equations containing absolute values, using the definition of absolute value.0110

For example, |9x + 2| = 29; well, I already said that, if the absolute value of x is 3, that means that x equals 3, or x equals -3.0121

So, you can apply that same concept right here: 9x + 2 = 29, or 9x + 2 = -29.0134

So, once you remove the absolute value bars (and you can do that by turning it into two related equations,0144

one where it equals the positive, and one where it equals the negative value)--once you have done that,0151

all you need to do is solve each equation.0155

So, I am going to solve, just using my usual techniques: subtract two from both sides, and that gives me 9x = 27.0159

Over here, if I subtract 2 from both sides, I am going to get 9x = -31.0169

Then, I am going to divide both sides by 9.0176

OK, so you handle the absolute value equations the same way, even if it is more complex.0186

The other thing to keep in mind is that sometimes, you have to first isolate the absolute value expression on the left side of the equation.0193

For example, if you were given 3 times |5x + 4| equals 6, the first step would be to divide both sides by 3,0199

because once you have done that, then you have the absolute value isolated,0210

and you can proceed by saying 5x + 4 = 2 or 5x + 4 = -2, and then solving both of those.0214

In some situations, some absolute value equations, where the absolute value equals c, if c is less than 0, these have no solution.0227

So, if it says that the absolute value of x is a negative number, then there is no solution; and we just say that the solution is the empty set.0236

And to make this more concrete: if I said that the absolute value of x equals -4...well, there is no situation0249

where an absolute value is going to be a negative number, because remember: the absolute value is defined0258

as the distance between that absolute value and 0 on the number line.0266

And you can't have negative distance; so there is no solution here.0271

And instead, we either just write the empty set as such, or like this, indicating that there is no solution.0275

We just talked about a situation where there is no solution.0287

An absolute value equation can have 0 solutions (which we just discussed--it is the empty set), 1 solution, or 2 solutions.0290

And it is important to check each answer to make sure that it is a valid solution.0298

For example, if I have |x + 4| = 9, I am going to go ahead and solve that,0304

using the usual technique of turning it into two related equations, x + 4 = 9 and x + 4 = -9.0311

I am going to solve that: x = 5; here, I am going to get x = -13.0321

So, let's check this by going back to the original, |x + 4| = 9.0329

If x = 5, then I am going to get |5 + 4| = 9; so, the absolute value of 9 equals 9--and that is true.0335

Since this is true, this is a valid solution; x = 5 is a valid solution.0345

OK, doing the same thing for my other solution: |x + 4| = 9...0350

trying this |-13 + 4| = 9, well, -13 + 4 is -9, so the absolute value of -9 is 9.0358

This is also a valid solution, since this is a true statement.0368

So here, I have two solutions: previously, we discussed that, if you end up with something like |x| = -6, there is no solution; it is the empty set.0372

The situation where you can get one solution is if you end up with |x| = 0.0390

So, if I went to solve this, I would say, "x equals +0, and x equals -0"; but that doesn't really just make sense; they are just 0.0400

Therefore, there is only one solution: x = 0; so here, I have one solution.0408

Three possibilities: no solution, one solution, or two solutions.0414

Or you may think you have two solutions, and then you go back and plug them in, and find out one is not valid.0419

And in that case, you could have something like this, that appears that it would end up with two solutions,0425

and it only ends up with one, or possibly even none.0430

OK, Example 1: Evaluate for x = -3; and this is multiple absolute value terms here--0437

substituting in -3 for x, solving for the absolute value of this would be 3 times -3...that is going to give me |-9 - 4|;0447

here, I have 2 times -3; that is |-6 + 3|; minus 3 times...the absolute value of a negative, times a negative, is a positive.0469

OK, this is |-9 - 4|; that is the absolute value of -13, plus |-6 + 3|; that is -3; minus 3...absolute value of 3.0480

Now, I just need to find the absolute value for each of these.0493

Well, the absolute value of -13 is 13; the absolute value of -3 is 3; the absolute value of 3 is 3;0497

but this time, we are multiplying it times a -3; this is -3 times |3| (which is 3).0512

So here, it's 13 + 3...-3 times 3 is -9, so 13 + 3 is 16, minus 9 is 7.0523

OK, so we are solving this by substituting in -3 for x, finding the absolute values for these three, and then this one is multiplied by -3, and then simply adding.0536

Example 2: I have an absolute value expression on the left, but it is not isolated.0550

So, the first step is to isolate the absolute value, and then find the two related equations and solve them.0555

Divide both sides by 4 to get that isolated.0562

Now, recall that the absolute value of x equals 2, for example: this means that x could equal 2,0570

or x could equal -2--to just illustrate the definition of absolute value.0578

In order to get rid of these absolute value symbols, I am going to create two related equations,0585

3x + 4 = 12, or 3x + 4 = -12: then I am going to solve both, and check to make sure that they are valid solutions.0590

3x = 8; so divide both sides...I had 3x + 4, so I subtracted 4 from both sides.0602

And then, over here, I have 3x = -16, subtracting 4 from both sides--I am just doing these together.0619

Now, dividing both sides by 3 is going to give me x = 8/3; dividing here, I get -16/3.0631

Now, check each of these in the original: that is this 4 times the absolute value of 3x + 4 equals 48.0641

First checking this one: 4, and this is 3 times 8/3 + 4, equals 48...so the 3's cancel out, and that gives me 8 + 4...equals 48,0652

so 4 times the absolute value of 12 equals 48; the absolute value of 12 is 12, so 4 times 12 equals 48; and it does, so this is valid.0672

This first solution is valid.0685

Now, substituting in -16/3, again, in this original: that is 4 times |3(-16/3) +4| = 48.0688

The 3's cancel out; that gives me 4|16 + 4| = 48.0704

-16 +4 is -12...equals 48...the absolute value of -12 is 12; so again, I come up with 4 times 12 equals 48, and that is valid.0710

That is a true statement; so both of these solutions are valid.0724

So this time, I had two solutions, 8/3 and -16/3, that satisfy this absolute value equation.0729

Example 3: again, my first step is to isolate the absolute value expression on the left side of the equation.0740

And I am going so start out by subtracting 15 from both sides, and that is going to give me -3 on the right.0748

Now, I want to divide both sides by 3, and that is going to give me |2x - 4| = -1.0756

And I don't even need to go any farther, because what this is saying is that0766

the absolute value of whatever this expression ends up being (once I solve for x)--the absolute value of this equals -1.0769

Well, that is not valid; you cannot have an absolute value equal a negative number, because it violates the definition of absolute value.0778

Therefore, I don't even need to go any farther; I can just say that there is no solution, or that it is the empty set.0789

So, there is no solution to this absolute value equation.0795

The important thing is to just look carefully at your work and make sure you didn't make any mistakes.0802

And if you did all the math correctly and handled this correctly, and you come up with something like this, then you didn't do anything wrong.0806

It is just that there is no solution.0813

OK, another absolute value expression: this time, the absolute value is already isolated on the left.0817

So, looking at this, it looks more complex; but we just use the same logic that we did with the simple case.0824

If the absolute value of x is 2, x equals 2, or x equals -2.0834

So, I do the same thing here: I get rid of the absolute value bars, and this is my positive permutation.0838

And then, I also have 2x - 7 = -(3x + 8).0846

OK, solving each of these: I am going to add 7 to both sides; that is going to give me 2x = 3x +15.0854

Then, I am going to subtract 3x from both sides, which is going to give me -x = 15.0867

I am going to multiply both sides by -1 to get x = -15.0876

So, that is my first solution: solving this...this is 2x - 7 = -3x - 8.0884

Adding 7 to both sides is 2x = -3x -1.0893

Adding 3x to both sides: 5x = -1; divide both sides by 5: x = -1/5.0900

OK, check: with absolute value equations, you always have to check your solutions.0909

So, checking this back in the original equation: 2 times -15, minus 7--the absolute value of that--equals 3 times -15, plus 8.0917

OK, so I have 2(-15), which is -30, minus 7, equals 3(-15), which is -45, plus 8.0931

This gives me |-37| equals...well, -45 + 8 is -37; the absolute value of -37 is 37.0945

Well, 37 does not equal -37, so this is not a valid solution; this is not true--this did not satisfy this equation.0959

So, x = -15 is not a valid solution; let's try this one, x = -1/5, substituting it in here.0970

|2(-1/5) - 7| = 3(-1/5) + 8: that is going to give me |(-2/5)-7| = (-3/5) + 8.0977

So then, adding these two together, I am going to get |-7 2/5| = 8 - 3/5...is 7 2/5.0999

OK, the absolute value of -7 2/5 is 7 2/5, equals 7 2/5; and that is true; this is a valid solution.1010

So, I actually have only one solution to this equation, and it is x = -1/5.1022

We are starting out by breaking this into two related equations and removing the absolute bar,1030

solving each, getting two solutions, and then checking and finding out that the first one is not valid, and that the second one is valid.1036

That concludes this session for Educator.com, and I will see you for the next Algebra II lesson.1046

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.