Mary Pyo

Mary Pyo

Inscribed Angles

Slide Duration:

Table of Contents

Section 1: Tools of Geometry
Coordinate Plane

16m 41s

Intro
0:00
The Coordinate System
0:12
Coordinate Plane: X-axis and Y-axis
0:15
Quadrants
1:02
Origin
2:00
Ordered Pair
2:17
Coordinate Plane
2:59
Example: Writing Coordinates
3:01
Coordinate Plane, cont.
4:15
Example: Graphing & Coordinate Plane
4:17
Collinear
5:58
Extra Example 1: Writing Coordinates & Quadrants
7:34
Extra Example 2: Quadrants
8:52
Extra Example 3: Graphing & Coordinate Plane
10:58
Extra Example 4: Collinear
12:50
Points, Lines and Planes

17m 17s

Intro
0:00
Points
0:07
Definition and Example of Points
0:09
Lines
0:50
Definition and Example of Lines
0:51
Planes
2:59
Definition and Example of Planes
3:00
Drawing and Labeling
4:40
Example 1: Drawing and Labeling
4:41
Example 2: Drawing and Labeling
5:54
Example 3: Drawing and Labeling
6:41
Example 4: Drawing and Labeling
8:23
Extra Example 1: Points, Lines and Planes
10:19
Extra Example 2: Naming Figures
11:16
Extra Example 3: Points, Lines and Planes
12:35
Extra Example 4: Draw and Label
14:44
Measuring Segments

31m 31s

Intro
0:00
Segments
0:06
Examples of Segments
0:08
Ruler Postulate
1:30
Ruler Postulate
1:31
Segment Addition Postulate
5:02
Example and Definition of Segment Addition Postulate
5:03
Segment Addition Postulate
8:01
Example 1: Segment Addition Postulate
8:04
Example 2: Segment Addition Postulate
11:15
Pythagorean Theorem
12:36
Definition of Pythagorean Theorem
12:37
Pythagorean Theorem, cont.
15:49
Example: Pythagorean Theorem
15:50
Distance Formula
16:48
Example and Definition of Distance Formula
16:49
Extra Example 1: Find Each Measure
20:32
Extra Example 2: Find the Missing Measure
22:11
Extra Example 3: Find the Distance Between the Two Points
25:36
Extra Example 4: Pythagorean Theorem
29:33
Midpoints and Segment Congruence

42m 26s

Intro
0:00
Definition of Midpoint
0:07
Midpoint
0:10
Midpoint Formulas
1:30
Midpoint Formula: On a Number Line
1:45
Midpoint Formula: In a Coordinate Plane
2:50
Midpoint
4:40
Example: Midpoint on a Number Line
4:43
Midpoint
6:05
Example: Midpoint in a Coordinate Plane
6:06
Midpoint
8:28
Example 1
8:30
Example 2
13:01
Segment Bisector
15:14
Definition and Example of Segment Bisector
15:15
Proofs
17:27
Theorem
17:53
Proof
18:21
Midpoint Theorem
19:37
Example: Proof & Midpoint Theorem
19:38
Extra Example 1: Midpoint on a Number Line
23:44
Extra Example 2: Drawing Diagrams
26:25
Extra Example 3: Midpoint
29:14
Extra Example 4: Segment Bisector
33:21
Angles

42m 34s

Intro
0:00
Angles
0:05
Angle
0:07
Ray
0:23
Opposite Rays
2:09
Angles
3:22
Example: Naming Angle
3:23
Angles
6:39
Interior, Exterior, Angle
6:40
Measure and Degrees
7:38
Protractor Postulate
8:37
Example: Protractor Postulate
8:38
Angle Addition Postulate
11:41
Example: Angle addition Postulate
11:42
Classifying Angles
14:10
Acute Angle
14:16
Right Angles
14:30
Obtuse Angle
14:41
Angle Bisector
15:02
Example: Angle Bisector
15:04
Angle Relationships
16:43
Adjacent Angles
16:47
Vertical Angles
17:49
Linear Pair
19:40
Angle Relationships
20:31
Right Angles
20:32
Supplementary Angles
21:15
Complementary Angles
21:33
Extra Example 1: Angles
24:08
Extra Example 2: Angles
29:06
Extra Example 3: Angles
32:05
Extra Example 4 Angles
35:44
Section 2: Reasoning & Proof
Inductive Reasoning

19m

Intro
0:00
Inductive Reasoning
0:05
Conjecture
0:06
Inductive Reasoning
0:15
Examples
0:55
Example: Sequence
0:56
More Example: Sequence
2:00
Using Inductive Reasoning
2:50
Example: Conjecture
2:51
More Example: Conjecture
3:48
Counterexamples
4:56
Counterexample
4:58
Extra Example 1: Conjecture
6:59
Extra Example 2: Sequence and Pattern
10:20
Extra Example 3: Inductive Reasoning
12:46
Extra Example 4: Conjecture and Counterexample
15:17
Conditional Statements

42m 47s

Intro
0:00
If Then Statements
0:05
If Then Statements
0:06
Other Forms
2:29
Example: Without Then
2:40
Example: Using When
3:03
Example: Hypothesis
3:24
Identify the Hypothesis and Conclusion
3:52
Example 1: Hypothesis and Conclusion
3:58
Example 2: Hypothesis and Conclusion
4:31
Example 3: Hypothesis and Conclusion
5:38
Write in If Then Form
6:16
Example 1: Write in If Then Form
6:23
Example 2: Write in If Then Form
6:57
Example 3: Write in If Then Form
7:39
Other Statements
8:40
Other Statements
8:41
Converse Statements
9:18
Converse Statements
9:20
Converses and Counterexamples
11:04
Converses and Counterexamples
11:05
Example 1: Converses and Counterexamples
12:02
Example 2: Converses and Counterexamples
15:10
Example 3: Converses and Counterexamples
17:08
Inverse Statement
19:58
Definition and Example
19:59
Inverse Statement
21:46
Example 1: Inverse and Counterexample
21:47
Example 2: Inverse and Counterexample
23:34
Contrapositive Statement
25:20
Definition and Example
25:21
Contrapositive Statement
26:58
Example: Contrapositive Statement
27:00
Summary
29:03
Summary of Lesson
29:04
Extra Example 1: Hypothesis and Conclusion
32:20
Extra Example 2: If-Then Form
33:23
Extra Example 3: Converse, Inverse, and Contrapositive
34:54
Extra Example 4: Converse, Inverse, and Contrapositive
37:56
Point, Line, and Plane Postulates

17m 24s

Intro
0:00
What are Postulates?
0:09
Definition of Postulates
0:10
Postulates
1:22
Postulate 1: Two Points
1:23
Postulate 2: Three Points
2:02
Postulate 3: Line
2:45
Postulates, cont..
3:08
Postulate 4: Plane
3:09
Postulate 5: Two Points in a Plane
3:53
Postulates, cont..
4:46
Postulate 6: Two Lines Intersect
4:47
Postulate 7: Two Plane Intersect
5:28
Using the Postulates
6:34
Examples: True or False
6:35
Using the Postulates
10:18
Examples: True or False
10:19
Extra Example 1: Always, Sometimes, or Never
12:22
Extra Example 2: Always, Sometimes, or Never
13:15
Extra Example 3: Always, Sometimes, or Never
14:16
Extra Example 4: Always, Sometimes, or Never
15:03
Deductive Reasoning

36m 3s

Intro
0:00
Deductive Reasoning
0:06
Definition of Deductive Reasoning
0:07
Inductive vs. Deductive
2:51
Inductive Reasoning
2:52
Deductive reasoning
3:19
Law of Detachment
3:47
Law of Detachment
3:48
Examples of Law of Detachment
4:31
Law of Syllogism
7:32
Law of Syllogism
7:33
Example 1: Making a Conclusion
9:02
Example 2: Making a Conclusion
12:54
Using Laws of Logic
14:12
Example 1: Determine the Logic
14:42
Example 2: Determine the Logic
17:02
Using Laws of Logic, cont.
18:47
Example 3: Determine the Logic
19:03
Example 4: Determine the Logic
20:56
Extra Example 1: Determine the Conclusion and Law
22:12
Extra Example 2: Determine the Conclusion and Law
25:39
Extra Example 3: Determine the Logic and Law
29:50
Extra Example 4: Determine the Logic and Law
31:27
Proofs in Algebra: Properties of Equality

44m 31s

Intro
0:00
Properties of Equality
0:10
Addition Property of Equality
0:28
Subtraction Property of Equality
1:10
Multiplication Property of Equality
1:41
Division Property of Equality
1:55
Addition Property of Equality Using Angles
2:46
Properties of Equality, cont.
4:10
Reflexive Property of Equality
4:11
Symmetric Property of Equality
5:24
Transitive Property of Equality
6:10
Properties of Equality, cont.
7:04
Substitution Property of Equality
7:05
Distributive Property of Equality
8:34
Two Column Proof
9:40
Example: Two Column Proof
9:46
Proof Example 1
16:13
Proof Example 2
23:49
Proof Example 3
30:33
Extra Example 1: Name the Property of Equality
38:07
Extra Example 2: Name the Property of Equality
40:16
Extra Example 3: Name the Property of Equality
41:35
Extra Example 4: Name the Property of Equality
43:02
Proving Segment Relationship

41m 2s

Intro
0:00
Good Proofs
0:12
Five Essential Parts
0:13
Proof Reasons
1:38
Undefined
1:40
Definitions
2:06
Postulates
2:42
Previously Proven Theorems
3:24
Congruence of Segments
4:10
Theorem: Congruence of Segments
4:12
Proof Example
10:16
Proof: Congruence of Segments
10:17
Setting Up Proofs
19:13
Example: Two Segments with Equal Measures
19:15
Setting Up Proofs
21:48
Example: Vertical Angles are Congruent
21:50
Setting Up Proofs
23:59
Example: Segment of a Triangle
24:00
Extra Example 1: Congruence of Segments
27:03
Extra Example 2: Setting Up Proofs
28:50
Extra Example 3: Setting Up Proofs
30:55
Extra Example 4: Two-Column Proof
33:11
Proving Angle Relationships

33m 37s

Intro
0:00
Supplement Theorem
0:05
Supplementary Angles
0:06
Congruence of Angles
2:37
Proof: Congruence of Angles
2:38
Angle Theorems
6:54
Angle Theorem 1: Supplementary Angles
6:55
Angle Theorem 2: Complementary Angles
10:25
Angle Theorems
11:32
Angle Theorem 3: Right Angles
11:35
Angle Theorem 4: Vertical Angles
12:09
Angle Theorem 5: Perpendicular Lines
12:57
Using Angle Theorems
13:45
Example 1: Always, Sometimes, or Never
13:50
Example 2: Always, Sometimes, or Never
14:28
Example 3: Always, Sometimes, or Never
16:21
Extra Example 1: Always, Sometimes, or Never
16:53
Extra Example 2: Find the Measure of Each Angle
18:55
Extra Example 3: Find the Measure of Each Angle
25:03
Extra Example 4: Two-Column Proof
27:08
Section 3: Perpendicular & Parallel Lines
Parallel Lines and Transversals

37m 35s

Intro
0:00
Lines
0:06
Parallel Lines
0:09
Skew Lines
2:02
Transversal
3:42
Angles Formed by a Transversal
4:28
Interior Angles
5:53
Exterior Angles
6:09
Consecutive Interior Angles
7:04
Alternate Exterior Angles
9:47
Alternate Interior Angles
11:22
Corresponding Angles
12:27
Angles Formed by a Transversal
15:29
Relationship Between Angles
15:30
Extra Example 1: Intersecting, Parallel, or Skew
19:26
Extra Example 2: Draw a Diagram
21:37
Extra Example 3: Name the Figures
24:12
Extra Example 4: Angles Formed by a Transversal
28:38
Angles and Parallel Lines

41m 53s

Intro
0:00
Corresponding Angles Postulate
0:05
Corresponding Angles Postulate
0:06
Alternate Interior Angles Theorem
3:05
Alternate Interior Angles Theorem
3:07
Consecutive Interior Angles Theorem
5:16
Consecutive Interior Angles Theorem
5:17
Alternate Exterior Angles Theorem
6:42
Alternate Exterior Angles Theorem
6:43
Parallel Lines Cut by a Transversal
7:18
Example: Parallel Lines Cut by a Transversal
7:19
Perpendicular Transversal Theorem
14:54
Perpendicular Transversal Theorem
14:55
Extra Example 1: State the Postulate or Theorem
16:37
Extra Example 2: Find the Measure of the Numbered Angle
18:53
Extra Example 3: Find the Measure of Each Angle
25:13
Extra Example 4: Find the Values of x, y, and z
36:26
Slope of Lines

44m 6s

Intro
0:00
Definition of Slope
0:06
Slope Equation
0:13
Slope of a Line
3:45
Example: Find the Slope of a Line
3:47
Slope of a Line
8:38
More Example: Find the Slope of a Line
8:40
Slope Postulates
12:32
Proving Slope Postulates
12:33
Parallel or Perpendicular Lines
17:23
Example: Parallel or Perpendicular Lines
17:24
Using Slope Formula
20:02
Example: Using Slope Formula
20:03
Extra Example 1: Slope of a Line
25:10
Extra Example 2: Slope of a Line
26:31
Extra Example 3: Graph the Line
34:11
Extra Example 4: Using the Slope Formula
38:50
Proving Lines Parallel

25m 55s

Intro
0:00
Postulates
0:06
Postulate 1: Parallel Lines
0:21
Postulate 2: Parallel Lines
2:16
Parallel Postulate
3:28
Definition and Example of Parallel Postulate
3:29
Theorems
4:29
Theorem 1: Parallel Lines
4:40
Theorem 2: Parallel Lines
5:37
Theorems, cont.
6:10
Theorem 3: Parallel Lines
6:11
Extra Example 1: Determine Parallel Lines
6:56
Extra Example 2: Find the Value of x
11:42
Extra Example 3: Opposite Sides are Parallel
14:48
Extra Example 4: Proving Parallel Lines
20:42
Parallels and Distance

19m 48s

Intro
0:00
Distance Between a Points and Line
0:07
Definition and Example
0:08
Distance Between Parallel Lines
1:51
Definition and Example
1:52
Extra Example 1: Drawing a Segment to Represent Distance
3:02
Extra Example 2: Drawing a Segment to Represent Distance
4:27
Extra Example 3: Graph, Plot, and Construct a Perpendicular Segment
5:13
Extra Example 4: Distance Between Two Parallel Lines
15:37
Section 4: Congruent Triangles
Classifying Triangles

28m 43s

Intro
0:00
Triangles
0:09
Triangle: A Three-Sided Polygon
0:10
Sides
1:00
Vertices
1:22
Angles
1:56
Classifying Triangles by Angles
2:59
Acute Triangle
3:19
Obtuse Triangle
4:08
Right Triangle
4:44
Equiangular Triangle
5:38
Definition and Example of an Equiangular Triangle
5:39
Classifying Triangles by Sides
6:57
Scalene Triangle
7:17
Isosceles Triangle
7:57
Equilateral Triangle
8:12
Isosceles Triangle
8:58
Labeling Isosceles Triangle
9:00
Labeling Right Triangle
10:44
Isosceles Triangle
11:10
Example: Find x, AB, BC, and AC
11:11
Extra Example 1: Classify Each Triangle
13:45
Extra Example 2: Always, Sometimes, or Never
16:28
Extra Example 3: Find All the Sides of the Isosceles Triangle
20:29
Extra Example 4: Distance Formula and Triangle
22:29
Measuring Angles in Triangles

44m 43s

Intro
0:00
Angle Sum Theorem
0:09
Angle Sum Theorem for Triangle
0:11
Using Angle Sum Theorem
4:06
Find the Measure of the Missing Angle
4:07
Third Angle Theorem
4:58
Example: Third Angle Theorem
4:59
Exterior Angle Theorem
7:58
Example: Exterior Angle Theorem
8:00
Flow Proof of Exterior Angle Theorem
15:14
Flow Proof of Exterior Angle Theorem
15:17
Triangle Corollaries
27:21
Triangle Corollary 1
27:50
Triangle Corollary 2
30:42
Extra Example 1: Find the Value of x
32:55
Extra Example 2: Find the Value of x
34:20
Extra Example 3: Find the Measure of the Angle
35:38
Extra Example 4: Find the Measure of Each Numbered Angle
39:00
Exploring Congruent Triangles

26m 46s

Intro
0:00
Congruent Triangles
0:15
Example of Congruent Triangles
0:17
Corresponding Parts
3:39
Corresponding Angles and Sides of Triangles
3:40
Definition of Congruent Triangles
11:24
Definition of Congruent Triangles
11:25
Triangle Congruence
16:37
Congruence of Triangles
16:38
Extra Example 1: Congruence Statement
18:24
Extra Example 2: Congruence Statement
21:26
Extra Example 3: Draw and Label the Figure
23:09
Extra Example 4: Drawing Triangles
24:04
Proving Triangles Congruent

47m 51s

Intro
0:00
SSS Postulate
0:18
Side-Side-Side Postulate
0:27
SAS Postulate
2:26
Side-Angle-Side Postulate
2:29
SAS Postulate
3:57
Proof Example
3:58
ASA Postulate
11:47
Angle-Side-Angle Postulate
11:53
AAS Theorem
14:13
Angle-Angle-Side Theorem
14:14
Methods Overview
16:16
Methods Overview
16:17
SSS
16:33
SAS
17:06
ASA
17:50
AAS
18:17
CPCTC
19:14
Extra Example 1:Proving Triangles are Congruent
21:29
Extra Example 2: Proof
25:40
Extra Example 3: Proof
30:41
Extra Example 4: Proof
38:41
Isosceles and Equilateral Triangles

27m 53s

Intro
0:00
Isosceles Triangle Theorem
0:07
Isosceles Triangle Theorem
0:09
Isosceles Triangle Theorem
2:26
Example: Using the Isosceles Triangle Theorem
2:27
Isosceles Triangle Theorem Converse
3:29
Isosceles Triangle Theorem Converse
3:30
Equilateral Triangle Theorem Corollaries
4:30
Equilateral Triangle Theorem Corollary 1
4:59
Equilateral Triangle Theorem Corollary 2
5:55
Extra Example 1: Find the Value of x
7:08
Extra Example 2: Find the Value of x
10:04
Extra Example 3: Proof
14:04
Extra Example 4: Proof
22:41
Section 5: Triangle Inequalities
Special Segments in Triangles

43m 44s

Intro
0:00
Perpendicular Bisector
0:06
Perpendicular Bisector
0:07
Perpendicular Bisector
4:07
Perpendicular Bisector Theorems
4:08
Median
6:30
Definition of Median
6:31
Median
9:41
Example: Median
9:42
Altitude
12:22
Definition of Altitude
12:23
Angle Bisector
14:33
Definition of Angle Bisector
14:34
Angle Bisector
16:41
Angle Bisector Theorems
16:42
Special Segments Overview
18:57
Perpendicular Bisector
19:04
Median
19:32
Altitude
19:49
Angle Bisector
20:02
Examples: Special Segments
20:18
Extra Example 1: Draw and Label
22:36
Extra Example 2: Draw the Altitudes for Each Triangle
24:37
Extra Example 3: Perpendicular Bisector
27:57
Extra Example 4: Draw, Label, and Write Proof
34:33
Right Triangles

26m 34s

Intro
0:00
LL Theorem
0:21
Leg-Leg Theorem
0:25
HA Theorem
2:23
Hypotenuse-Angle Theorem
2:24
LA Theorem
4:49
Leg-Angle Theorem
4:50
LA Theorem
6:18
Example: Find x and y
6:19
HL Postulate
8:22
Hypotenuse-Leg Postulate
8:23
Extra Example 1: LA Theorem & HL Postulate
10:57
Extra Example 2: Find x So That Each Pair of Triangles is Congruent
14:15
Extra Example 3: Two-column Proof
17:02
Extra Example 4: Two-column Proof
21:01
Indirect Proofs and Inequalities

33m 30s

Intro
0:00
Writing an Indirect Proof
0:09
Step 1
0:49
Step 2
2:32
Step 3
3:00
Indirect Proof
4:30
Example: 2 + 6 = 8
5:00
Example: The Suspect is Guilty
5:40
Example: Measure of Angle A < Measure of Angle B
6:06
Definition of Inequality
7:47
Definition of Inequality & Example
7:48
Properties of Inequality
9:55
Comparison Property
9:58
Transitive Property
10:33
Addition and Subtraction Properties
12:01
Multiplication and Division Properties
13:07
Exterior Angle Inequality Theorem
14:12
Example: Exterior Angle Inequality Theorem
14:13
Extra Example 1: Draw a Diagram for the Statement
18:32
Extra Example 2: Name the Property for Each Statement
19:56
Extra Example 3: State the Assumption
21:22
Extra Example 4: Write an Indirect Proof
25:39
Inequalities for Sides and Angles of a Triangle

17m 26s

Intro
0:00
Side to Angles
0:10
If One Side of a Triangle is Longer Than Another Side
0:11
Converse: Angles to Sides
1:57
If One Angle of a Triangle Has a Greater Measure Than Another Angle
1:58
Extra Example 1: Name the Angles in the Triangle From Least to Greatest
2:38
Extra Example 2: Find the Longest and Shortest Segment in the Triangle
3:47
Extra Example 3: Angles and Sides of a Triangle
4:51
Extra Example 4: Two-column Proof
9:08
Triangle Inequality

28m 11s

Intro
0:00
Triangle Inequality Theorem
0:05
Triangle Inequality Theorem
0:06
Triangle Inequality Theorem
4:22
Example 1: Triangle Inequality Theorem
4:23
Example 2: Triangle Inequality Theorem
9:40
Extra Example 1: Determine if the Three Numbers can Represent the Sides of a Triangle
12:00
Extra Example 2: Finding the Third Side of a Triangle
13:34
Extra Example 3: Always True, Sometimes True, or Never True
18:18
Extra Example 4: Triangle and Vertices
22:36
Inequalities Involving Two Triangles

29m 36s

Intro
0:00
SAS Inequality Theorem
0:06
SAS Inequality Theorem & Example
0:25
SSS Inequality Theorem
4:33
SSS Inequality Theorem & Example
4:34
Extra Example 1: Write an Inequality Comparing the Segments
6:08
Extra Example 2: Determine if the Statement is True
9:52
Extra Example 3: Write an Inequality for x
14:20
Extra Example 4: Two-column Proof
17:44
Section 6: Quadrilaterals
Parallelograms

29m 11s

Intro
0:00
Quadrilaterals
0:06
Four-sided Polygons
0:08
Non Examples of Quadrilaterals
0:47
Parallelograms
1:35
Parallelograms
1:36
Properties of Parallelograms
4:28
Opposite Sides of a Parallelogram are Congruent
4:29
Opposite Angles of a Parallelogram are Congruent
5:49
Angles and Diagonals
6:24
Consecutive Angles in a Parallelogram are Supplementary
6:25
The Diagonals of a Parallelogram Bisect Each Other
8:42
Extra Example 1: Complete Each Statement About the Parallelogram
10:26
Extra Example 2: Find the Values of x, y, and z of the Parallelogram
13:21
Extra Example 3: Find the Distance of Each Side to Verify the Parallelogram
16:35
Extra Example 4: Slope of Parallelogram
23:15
Proving Parallelograms

42m 43s

Intro
0:00
Parallelogram Theorems
0:09
Theorem 1
0:20
Theorem 2
1:50
Parallelogram Theorems, Cont.
3:10
Theorem 3
3:11
Theorem 4
4:15
Proving Parallelogram
6:21
Example: Determine if Quadrilateral ABCD is a Parallelogram
6:22
Summary
14:01
Both Pairs of Opposite Sides are Parallel
14:14
Both Pairs of Opposite Sides are Congruent
15:09
Both Pairs of Opposite Angles are Congruent
15:24
Diagonals Bisect Each Other
15:44
A Pair of Opposite Sides is Both Parallel and Congruent
16:13
Extra Example 1: Determine if Each Quadrilateral is a Parallelogram
16:54
Extra Example 2: Find the Value of x and y
20:23
Extra Example 3: Determine if the Quadrilateral ABCD is a Parallelogram
24:05
Extra Example 4: Two-column Proof
30:28
Rectangles

29m 47s

Intro
0:00
Rectangles
0:03
Definition of Rectangles
0:04
Diagonals of Rectangles
2:52
Rectangles: Diagonals Property 1
2:53
Rectangles: Diagonals Property 2
3:30
Proving a Rectangle
4:40
Example: Determine Whether Parallelogram ABCD is a Rectangle
4:41
Rectangles Summary
9:22
Opposite Sides are Congruent and Parallel
9:40
Opposite Angles are Congruent
9:51
Consecutive Angles are Supplementary
9:58
Diagonals are Congruent and Bisect Each Other
10:05
All Four Angles are Right Angles
10:40
Extra Example 1: Find the Value of x
11:03
Extra Example 2: Name All Congruent Sides and Angles
13:52
Extra Example 3: Always, Sometimes, or Never True
19:39
Extra Example 4: Determine if ABCD is a Rectangle
26:45
Squares and Rhombi

39m 14s

Intro
0:00
Rhombus
0:09
Definition of a Rhombus
0:10
Diagonals of a Rhombus
2:03
Rhombus: Diagonals Property 1
2:21
Rhombus: Diagonals Property 2
3:49
Rhombus: Diagonals Property 3
4:36
Rhombus
6:17
Example: Use the Rhombus to Find the Missing Value
6:18
Square
8:17
Definition of a Square
8:20
Summary Chart
11:06
Parallelogram
11:07
Rectangle
12:56
Rhombus
13:54
Square
14:44
Extra Example 1: Diagonal Property
15:44
Extra Example 2: Use Rhombus ABCD to Find the Missing Value
19:39
Extra Example 3: Always, Sometimes, or Never True
23:06
Extra Example 4: Determine the Quadrilateral
28:02
Trapezoids and Kites

30m 48s

Intro
0:00
Trapezoid
0:10
Definition of Trapezoid
0:12
Isosceles Trapezoid
2:57
Base Angles of an Isosceles Trapezoid
2:58
Diagonals of an Isosceles Trapezoid
4:05
Median of a Trapezoid
4:26
Median of a Trapezoid
4:27
Median of a Trapezoid
6:41
Median Formula
7:00
Kite
8:28
Definition of a Kite
8:29
Quadrilaterals Summary
11:19
A Quadrilateral with Two Pairs of Adjacent Congruent Sides
11:20
Extra Example 1: Isosceles Trapezoid
14:50
Extra Example 2: Median of Trapezoid
18:28
Extra Example 3: Always, Sometimes, or Never
24:13
Extra Example 4: Determine if the Figure is a Trapezoid
26:49
Section 7: Proportions and Similarity
Using Proportions and Ratios

20m 10s

Intro
0:00
Ratio
0:05
Definition and Examples of Writing Ratio
0:06
Proportion
2:05
Definition of Proportion
2:06
Examples of Proportion
2:29
Using Ratio
5:53
Example: Ratio
5:54
Extra Example 1: Find Three Ratios Equivalent to 2/5
9:28
Extra Example 2: Proportion and Cross Products
10:32
Extra Example 3: Express Each Ratio as a Fraction
13:18
Extra Example 4: Fin the Measure of a 3:4:5 Triangle
17:26
Similar Polygons

27m 53s

Intro
0:00
Similar Polygons
0:05
Definition of Similar Polygons
0:06
Example of Similar Polygons
2:32
Scale Factor
4:26
Scale Factor: Definition and Example
4:27
Extra Example 1: Determine if Each Pair of Figures is Similar
7:03
Extra Example 2: Find the Values of x and y
11:33
Extra Example 3: Similar Triangles
19:57
Extra Example 4: Draw Two Similar Figures
23:36
Similar Triangles

34m 10s

Intro
0:00
AA Similarity
0:10
Definition of AA Similarity
0:20
Example of AA Similarity
2:32
SSS Similarity
4:46
Definition of SSS Similarity
4:47
Example of SSS Similarity
6:00
SAS Similarity
8:04
Definition of SAS Similarity
8:05
Example of SAS Similarity
9:12
Extra Example 1: Determine Whether Each Pair of Triangles is Similar
10:59
Extra Example 2: Determine Which Triangles are Similar
16:08
Extra Example 3: Determine if the Statement is True or False
23:11
Extra Example 4: Write Two-Column Proof
26:25
Parallel Lines and Proportional Parts

24m 7s

Intro
0:00
Triangle Proportionality
0:07
Definition of Triangle Proportionality
0:08
Example of Triangle Proportionality
0:51
Triangle Proportionality Converse
2:19
Triangle Proportionality Converse
2:20
Triangle Mid-segment
3:42
Triangle Mid-segment: Definition and Example
3:43
Parallel Lines and Transversal
6:51
Parallel Lines and Transversal
6:52
Extra Example 1: Complete Each Statement
8:59
Extra Example 2: Determine if the Statement is True or False
12:28
Extra Example 3: Find the Value of x and y
15:35
Extra Example 4: Find Midpoints of a Triangle
20:43
Parts of Similar Triangles

27m 6s

Intro
0:00
Proportional Perimeters
0:09
Proportional Perimeters: Definition and Example
0:10
Similar Altitudes
2:23
Similar Altitudes: Definition and Example
2:24
Similar Angle Bisectors
4:50
Similar Angle Bisectors: Definition and Example
4:51
Similar Medians
6:05
Similar Medians: Definition and Example
6:06
Angle Bisector Theorem
7:33
Angle Bisector Theorem
7:34
Extra Example 1: Parts of Similar Triangles
10:52
Extra Example 2: Parts of Similar Triangles
14:57
Extra Example 3: Parts of Similar Triangles
19:27
Extra Example 4: Find the Perimeter of Triangle ABC
23:14
Section 8: Applying Right Triangles & Trigonometry
Pythagorean Theorem

21m 14s

Intro
0:00
Pythagorean Theorem
0:05
Pythagorean Theorem & Example
0:06
Pythagorean Converse
1:20
Pythagorean Converse & Example
1:21
Pythagorean Triple
2:42
Pythagorean Triple
2:43
Extra Example 1: Find the Missing Side
4:59
Extra Example 2: Determine Right Triangle
7:40
Extra Example 3: Determine Pythagorean Triple
11:30
Extra Example 4: Vertices and Right Triangle
14:29
Geometric Mean

40m 59s

Intro
0:00
Geometric Mean
0:04
Geometric Mean & Example
0:05
Similar Triangles
4:32
Similar Triangles
4:33
Geometric Mean-Altitude
11:10
Geometric Mean-Altitude & Example
11:11
Geometric Mean-Leg
14:47
Geometric Mean-Leg & Example
14:18
Extra Example 1: Geometric Mean Between Each Pair of Numbers
20:10
Extra Example 2: Similar Triangles
23:46
Extra Example 3: Geometric Mean of Triangles
28:30
Extra Example 4: Geometric Mean of Triangles
36:58
Special Right Triangles

37m 57s

Intro
0:00
45-45-90 Triangles
0:06
Definition of 45-45-90 Triangles
0:25
45-45-90 Triangles
5:51
Example: Find n
5:52
30-60-90 Triangles
8:59
Definition of 30-60-90 Triangles
9:00
30-60-90 Triangles
12:25
Example: Find n
12:26
Extra Example 1: Special Right Triangles
15:08
Extra Example 2: Special Right Triangles
18:22
Extra Example 3: Word Problems & Special Triangles
27:40
Extra Example 4: Hexagon & Special Triangles
33:51
Ratios in Right Triangles

40m 37s

Intro
0:00
Trigonometric Ratios
0:08
Definition of Trigonometry
0:13
Sine (sin), Cosine (cos), & Tangent (tan)
0:50
Trigonometric Ratios
3:04
Trig Functions
3:05
Inverse Trig Functions
5:02
SOHCAHTOA
8:16
sin x
9:07
cos x
10:00
tan x
10:32
Example: SOHCAHTOA & Triangle
12:10
Extra Example 1: Find the Value of Each Ratio or Angle Measure
14:36
Extra Example 2: Find Sin, Cos, and Tan
18:51
Extra Example 3: Find the Value of x Using SOHCAHTOA
22:55
Extra Example 4: Trigonometric Ratios in Right Triangles
32:13
Angles of Elevation and Depression

21m 4s

Intro
0:00
Angle of Elevation
0:10
Definition of Angle of Elevation & Example
0:11
Angle of Depression
1:19
Definition of Angle of Depression & Example
1:20
Extra Example 1: Name the Angle of Elevation and Depression
2:22
Extra Example 2: Word Problem & Angle of Depression
4:41
Extra Example 3: Word Problem & Angle of Elevation
14:02
Extra Example 4: Find the Missing Measure
18:10
Law of Sines

35m 25s

Intro
0:00
Law of Sines
0:20
Law of Sines
0:21
Law of Sines
3:34
Example: Find b
3:35
Solving the Triangle
9:19
Example: Using the Law of Sines to Solve Triangle
9:20
Extra Example 1: Law of Sines and Triangle
17:43
Extra Example 2: Law of Sines and Triangle
20:06
Extra Example 3: Law of Sines and Triangle
23:54
Extra Example 4: Law of Sines and Triangle
28:59
Law of Cosines

52m 43s

Intro
0:00
Law of Cosines
0:35
Law of Cosines
0:36
Law of Cosines
6:22
Use the Law of Cosines When Both are True
6:23
Law of Cosines
8:35
Example: Law of Cosines
8:36
Extra Example 1: Law of Sines or Law of Cosines?
13:35
Extra Example 2: Use the Law of Cosines to Find the Missing Measure
17:02
Extra Example 3: Solve the Triangle
30:49
Extra Example 4: Find the Measure of Each Diagonal of the Parallelogram
41:39
Section 9: Circles
Segments in a Circle

22m 43s

Intro
0:00
Segments in a Circle
0:10
Circle
0:11
Chord
0:59
Diameter
1:32
Radius
2:07
Secant
2:17
Tangent
3:10
Circumference
3:56
Introduction to Circumference
3:57
Example: Find the Circumference of the Circle
5:09
Circumference
6:40
Example: Find the Circumference of the Circle
6:41
Extra Example 1: Use the Circle to Answer the Following
9:10
Extra Example 2: Find the Missing Measure
12:53
Extra Example 3: Given the Circumference, Find the Perimeter of the Triangle
15:51
Extra Example 4: Find the Circumference of Each Circle
19:24
Angles and Arc

35m 24s

Intro
0:00
Central Angle
0:06
Definition of Central Angle
0:07
Sum of Central Angles
1:17
Sum of Central Angles
1:18
Arcs
2:27
Minor Arc
2:30
Major Arc
3:47
Arc Measure
5:24
Measure of Minor Arc
5:24
Measure of Major Arc
6:53
Measure of a Semicircle
7:11
Arc Addition Postulate
8:25
Arc Addition Postulate
8:26
Arc Length
9:43
Arc Length and Example
9:44
Concentric Circles
16:05
Concentric Circles
16:06
Congruent Circles and Arcs
17:50
Congruent Circles
17:51
Congruent Arcs
18:47
Extra Example 1: Minor Arc, Major Arc, and Semicircle
20:14
Extra Example 2: Measure and Length of Arc
22:52
Extra Example 3: Congruent Arcs
25:48
Extra Example 4: Angles and Arcs
30:33
Arcs and Chords

21m 51s

Intro
0:00
Arcs and Chords
0:07
Arc of the Chord
0:08
Theorem 1: Congruent Minor Arcs
1:01
Inscribed Polygon
2:10
Inscribed Polygon
2:11
Arcs and Chords
3:18
Theorem 2: When a Diameter is Perpendicular to a Chord
3:19
Arcs and Chords
5:05
Theorem 3: Congruent Chords
5:06
Extra Example 1: Congruent Arcs
10:35
Extra Example 2: Length of Arc
13:50
Extra Example 3: Arcs and Chords
17:09
Extra Example 4: Arcs and Chords
19:45
Inscribed Angles

27m 53s

Intro
0:00
Inscribed Angles
0:07
Definition of Inscribed Angles
0:08
Inscribed Angles
0:58
Inscribed Angle Theorem 1
0:59
Inscribed Angles
3:29
Inscribed Angle Theorem 2
3:30
Inscribed Angles
4:38
Inscribed Angle Theorem 3
4:39
Inscribed Quadrilateral
5:50
Inscribed Quadrilateral
5:51
Extra Example 1: Central Angle, Inscribed Angle, and Intercepted Arc
7:02
Extra Example 2: Inscribed Angles
9:24
Extra Example 3: Inscribed Angles
14:00
Extra Example 4: Complete the Proof
17:58
Tangents

26m 16s

Intro
0:00
Tangent Theorems
0:04
Tangent Theorem 1
0:05
Tangent Theorem 1 Converse
0:55
Common Tangents
1:34
Common External Tangent
2:12
Common Internal Tangent
2:30
Tangent Segments
3:08
Tangent Segments
3:09
Circumscribed Polygons
4:11
Circumscribed Polygons
4:12
Extra Example 1: Tangents & Circumscribed Polygons
5:50
Extra Example 2: Tangents & Circumscribed Polygons
8:35
Extra Example 3: Tangents & Circumscribed Polygons
11:50
Extra Example 4: Tangents & Circumscribed Polygons
15:43
Secants, Tangents, & Angle Measures

27m 50s

Intro
0:00
Secant
0:08
Secant
0:09
Secant and Tangent
0:49
Secant and Tangent
0:50
Interior Angles
2:56
Secants & Interior Angles
2:57
Exterior Angles
7:21
Secants & Exterior Angles
7:22
Extra Example 1: Secants, Tangents, & Angle Measures
10:53
Extra Example 2: Secants, Tangents, & Angle Measures
13:31
Extra Example 3: Secants, Tangents, & Angle Measures
19:54
Extra Example 4: Secants, Tangents, & Angle Measures
22:29
Special Segments in a Circle

23m 8s

Intro
0:00
Chord Segments
0:05
Chord Segments
0:06
Secant Segments
1:36
Secant Segments
1:37
Tangent and Secant Segments
4:10
Tangent and Secant Segments
4:11
Extra Example 1: Special Segments in a Circle
5:53
Extra Example 2: Special Segments in a Circle
7:58
Extra Example 3: Special Segments in a Circle
11:24
Extra Example 4: Special Segments in a Circle
18:09
Equations of Circles

27m 1s

Intro
0:00
Equation of a Circle
0:06
Standard Equation of a Circle
0:07
Example 1: Equation of a Circle
0:57
Example 2: Equation of a Circle
1:36
Extra Example 1: Determine the Coordinates of the Center and the Radius
4:56
Extra Example 2: Write an Equation Based on the Given Information
7:53
Extra Example 3: Graph Each Circle
16:48
Extra Example 4: Write the Equation of Each Circle
19:17
Section 10: Polygons & Area
Polygons

27m 24s

Intro
0:00
Polygons
0:10
Polygon vs. Not Polygon
0:18
Convex and Concave
1:46
Convex vs. Concave Polygon
1:52
Regular Polygon
4:04
Regular Polygon
4:05
Interior Angle Sum Theorem
4:53
Triangle
5:03
Quadrilateral
6:05
Pentagon
6:38
Hexagon
7:59
20-Gon
9:36
Exterior Angle Sum Theorem
12:04
Exterior Angle Sum Theorem
12:05
Extra Example 1: Drawing Polygons
13:51
Extra Example 2: Convex Polygon
15:16
Extra Example 3: Exterior Angle Sum Theorem
18:21
Extra Example 4: Interior Angle Sum Theorem
22:20
Area of Parallelograms

17m 46s

Intro
0:00
Parallelograms
0:06
Definition and Area Formula
0:07
Area of Figure
2:00
Area of Figure
2:01
Extra Example 1:Find the Area of the Shaded Area
3:14
Extra Example 2: Find the Height and Area of the Parallelogram
6:00
Extra Example 3: Find the Area of the Parallelogram Given Coordinates and Vertices
10:11
Extra Example 4: Find the Area of the Figure
14:31
Area of Triangles Rhombi, & Trapezoids

20m 31s

Intro
0:00
Area of a Triangle
0:06
Area of a Triangle: Formula and Example
0:07
Area of a Trapezoid
2:31
Area of a Trapezoid: Formula
2:32
Area of a Trapezoid: Example
6:55
Area of a Rhombus
8:05
Area of a Rhombus: Formula and Example
8:06
Extra Example 1: Find the Area of the Polygon
9:51
Extra Example 2: Find the Area of the Figure
11:19
Extra Example 3: Find the Area of the Figure
14:16
Extra Example 4: Find the Height of the Trapezoid
18:10
Area of Regular Polygons & Circles

36m 43s

Intro
0:00
Regular Polygon
0:08
SOHCAHTOA
0:54
30-60-90 Triangle
1:52
45-45-90 Triangle
2:40
Area of a Regular Polygon
3:39
Area of a Regular Polygon
3:40
Are of a Circle
7:55
Are of a Circle
7:56
Extra Example 1: Find the Area of the Regular Polygon
8:22
Extra Example 2: Find the Area of the Regular Polygon
16:48
Extra Example 3: Find the Area of the Shaded Region
24:11
Extra Example 4: Find the Area of the Shaded Region
32:24
Perimeter & Area of Similar Figures

18m 17s

Intro
0:00
Perimeter of Similar Figures
0:08
Example: Scale Factor & Perimeter of Similar Figures
0:09
Area of Similar Figures
2:44
Example:Scale Factor & Area of Similar Figures
2:55
Extra Example 1: Complete the Table
6:09
Extra Example 2: Find the Ratios of the Perimeter and Area of the Similar Figures
8:56
Extra Example 3: Find the Unknown Area
12:04
Extra Example 4: Use the Given Area to Find AB
14:26
Geometric Probability

38m 40s

Intro
0:00
Length Probability Postulate
0:05
Length Probability Postulate
0:06
Are Probability Postulate
2:34
Are Probability Postulate
2:35
Are of a Sector of a Circle
4:11
Are of a Sector of a Circle Formula
4:12
Are of a Sector of a Circle Example
7:51
Extra Example 1: Length Probability
11:07
Extra Example 2: Area Probability
12:14
Extra Example 3: Area Probability
17:17
Extra Example 4: Area of a Sector of a Circle
26:23
Section 11: Solids
Three-Dimensional Figures

23m 39s

Intro
0:00
Polyhedrons
0:05
Polyhedrons: Definition and Examples
0:06
Faces
1:08
Edges
1:55
Vertices
2:23
Solids
2:51
Pyramid
2:54
Cylinder
3:45
Cone
4:09
Sphere
4:23
Prisms
5:00
Rectangular, Regular, and Cube Prisms
5:02
Platonic Solids
9:48
Five Types of Regular Polyhedra
9:49
Slices and Cross Sections
12:07
Slices
12:08
Cross Sections
12:47
Extra Example 1: Name the Edges, Faces, and Vertices of the Polyhedron
14:23
Extra Example 2: Determine if the Figure is a Polyhedron and Explain Why
17:37
Extra Example 3: Describe the Slice Resulting from the Cut
19:12
Extra Example 4: Describe the Shape of the Intersection
21:25
Surface Area of Prisms and Cylinders

38m 50s

Intro
0:00
Prisms
0:06
Bases
0:07
Lateral Faces
0:52
Lateral Edges
1:19
Altitude
1:58
Prisms
2:24
Right Prism
2:25
Oblique Prism
2:56
Classifying Prisms
3:27
Right Rectangular Prism
3:28
4:55
Oblique Pentagonal Prism
6:26
Right Hexagonal Prism
7:14
Lateral Area of a Prism
7:42
Lateral Area of a Prism
7:43
Surface Area of a Prism
13:44
Surface Area of a Prism
13:45
Cylinder
16:18
Cylinder: Right and Oblique
16:19
Lateral Area of a Cylinder
18:02
Lateral Area of a Cylinder
18:03
Surface Area of a Cylinder
20:54
Surface Area of a Cylinder
20:55
Extra Example 1: Find the Lateral Area and Surface Are of the Prism
21:51
Extra Example 2: Find the Lateral Area of the Prism
28:15
Extra Example 3: Find the Surface Area of the Prism
31:57
Extra Example 4: Find the Lateral Area and Surface Area of the Cylinder
34:17
Surface Area of Pyramids and Cones

26m 10s

Intro
0:00
Pyramids
0:07
Pyramids
0:08
Regular Pyramids
1:52
Regular Pyramids
1:53
Lateral Area of a Pyramid
4:33
Lateral Area of a Pyramid
4:34
Surface Area of a Pyramid
9:19
Surface Area of a Pyramid
9:20
Cone
10:09
Right and Oblique Cone
10:10
Lateral Area and Surface Area of a Right Cone
11:20
Lateral Area and Surface Are of a Right Cone
11:21
Extra Example 1: Pyramid and Prism
13:11
Extra Example 2: Find the Lateral Area of the Regular Pyramid
15:00
Extra Example 3: Find the Surface Area of the Pyramid
18:29
Extra Example 4: Find the Lateral Area and Surface Area of the Cone
22:08
Volume of Prisms and Cylinders

21m 59s

Intro
0:00
Volume of Prism
0:08
Volume of Prism
0:10
Volume of Cylinder
3:38
Volume of Cylinder
3:39
Extra Example 1: Find the Volume of the Prism
5:10
Extra Example 2: Find the Volume of the Cylinder
8:03
Extra Example 3: Find the Volume of the Prism
9:35
Extra Example 4: Find the Volume of the Solid
19:06
Volume of Pyramids and Cones

22m 2s

Intro
0:00
Volume of a Cone
0:08
Volume of a Cone: Example
0:10
Volume of a Pyramid
3:02
Volume of a Pyramid: Example
3:03
Extra Example 1: Find the Volume of the Pyramid
4:56
Extra Example 2: Find the Volume of the Solid
6:01
Extra Example 3: Find the Volume of the Pyramid
10:28
Extra Example 4: Find the Volume of the Octahedron
16:23
Surface Area and Volume of Spheres

14m 46s

Intro
0:00
Special Segments
0:06
Radius
0:07
Chord
0:31
Diameter
0:55
Tangent
1:20
Sphere
1:43
Plane & Sphere
1:44
Hemisphere
2:56
Surface Area of a Sphere
3:25
Surface Area of a Sphere
3:26
Volume of a Sphere
4:08
Volume of a Sphere
4:09
Extra Example 1: Determine Whether Each Statement is True or False
4:24
Extra Example 2: Find the Surface Area of the Sphere
6:17
Extra Example 3: Find the Volume of the Sphere with a Diameter of 20 Meters
7:25
Extra Example 4: Find the Surface Area and Volume of the Solid
9:17
Congruent and Similar Solids

16m 6s

Intro
0:00
Scale Factor
0:06
Scale Factor: Definition and Example
0:08
Congruent Solids
1:09
Congruent Solids
1:10
Similar Solids
2:17
Similar Solids
2:18
Extra Example 1: Determine if Each Pair of Solids is Similar, Congruent, or Neither
3:35
Extra Example 2: Determine if Each Statement is True or False
7:47
Extra Example 3: Find the Scale Factor and the Ratio of the Surface Areas and Volume
10:14
Extra Example 4: Find the Volume of the Larger Prism
12:14
Section 12: Transformational Geometry
Mapping

14m 12s

Intro
0:00
Transformation
0:04
Rotation
0:32
Translation
1:03
Reflection
1:17
Dilation
1:24
Transformations
1:45
Examples
1:46
Congruence Transformation
2:51
Congruence Transformation
2:52
Extra Example 1: Describe the Transformation that Occurred in the Mappings
3:37
Extra Example 2: Determine if the Transformation is an Isometry
5:16
Extra Example 3: Isometry
8:16
Reflections

23m 17s

Intro
0:00
Reflection
0:05
Definition of Reflection
0:06
Line of Reflection
0:35
Point of Reflection
1:22
Symmetry
1:59
Line of Symmetry
2:00
Point of Symmetry
2:48
Extra Example 1: Draw the Image over the Line of Reflection and the Point of Reflection
3:45
Extra Example 2: Determine Lines and Point of Symmetry
6:59
Extra Example 3: Graph the Reflection of the Polygon
11:15
Extra Example 4: Graph the Coordinates
16:07
Translations

18m 43s

Intro
0:00
Translation
0:05
Translation: Preimage & Image
0:06
Example
0:56
Composite of Reflections
6:28
Composite of Reflections
6:29
Extra Example 1: Translation
7:48
Extra Example 2: Image, Preimage, and Translation
12:38
Extra Example 3: Find the Translation Image Using a Composite of Reflections
15:08
Extra Example 4: Find the Value of Each Variable in the Translation
17:18
Rotations

21m 26s

Intro
0:00
Rotations
0:04
Rotations
0:05
Performing Rotations
2:13
Composite of Two Successive Reflections over Two Intersecting Lines
2:14
Angle of Rotation: Angle Formed by Intersecting Lines
4:29
Angle of Rotation
5:30
Rotation Postulate
5:31
Extra Example 1: Find the Rotated Image
7:32
Extra Example 2: Rotations and Coordinate Plane
10:33
Extra Example 3: Find the Value of Each Variable in the Rotation
14:29
Extra Example 4: Draw the Polygon Rotated 90 Degree Clockwise about P
16:13
Dilation

37m 6s

Intro
0:00
Dilations
0:06
Dilations
0:07
Scale Factor
1:36
Scale Factor
1:37
Example 1
2:06
Example 2
6:22
Scale Factor
8:20
Positive Scale Factor
8:21
Negative Scale Factor
9:25
Enlargement
12:43
Reduction
13:52
Extra Example 1: Find the Scale Factor
16:39
Extra Example 2: Find the Measure of the Dilation Image
19:32
Extra Example 3: Find the Coordinates of the Image with Scale Factor and the Origin as the Center of Dilation
26:18
Extra Example 4: Graphing Polygon, Dilation, and Scale Factor
32:08
Loading...
This is a quick preview of the lesson. For full access, please Log In or Sign up.
For more information, please see full course syllabus of Geometry
Bookmark & Share Embed

Share this knowledge with your friends!

Copy & Paste this embed code into your website’s HTML

Please ensure that your website editor is in text mode when you paste the code.
(In Wordpress, the mode button is on the top right corner.)
  ×
  • - Allow users to view the embedded video in full-size.
Since this lesson is not free, only the preview will appear on your website.
  • Discussion

  • Answer Engine

  • Study Guides

  • Practice Questions

  • Download Lecture Slides

  • Table of Contents

  • Transcription

  • Related Books

Lecture Comments (2)

1 answer

Last reply by: Briahnna Austin
Wed Apr 20, 2016 2:59 AM

Post by Briahnna Austin on April 20, 2016

Hello, this video was great, but I had a question about the central angles you listed.

By definition you said the central angle is related to the center. The point is in the middle and the chords extend to the end of the circle-- you listed <CPB, and <APB as central angles and I was wondering why is <APC or <CPA not listed as a central angle, since it follows the qualifications a central angle should have?

Inscribed Angles

  • Inscribed angle: An angle whose vertex is on the circle and whose sides are chords of the circle
  • If an angle is inscribed in a circle, then the measure of the angle equals one-half the measure of its intercepted arc
  • If two inscribed angles of a circle or congruent circles intercept congruent arcs or the same arc, then the angles are congruent
  • If an inscribed angle of a circle interprets a semicircle, then the angle is a right angle
  • If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary

Inscribed Angles


m∠BCF = 30o, find mBF.
mBF = 2m∠BCF = 2 ·30 = 60o

write 3 inscribed angles.
∠BCD, ∠BDC, ∠CBD.

m∠BCF = 30o, find m∠BDF.
m∠BDF = m∠BCF = 30o,

Determine whether the following statement is true or false.
Points B, C and D are on circle A, CD passes through the center A, ∠CBD is a right angle.
True.
Determine whether the following statement is true or false.
If a quadrilateral is inscribed in a circle, then its opposite angles are congruent.
False.

Name a central angle, the inscribed angle, and the intercepted arc.
  • Central angle: ∠CAD
  • Inscribed angle: ∠CBD
  • Intercepted arc : CD
Central angle: ∠CAD
Inscribed angle: ∠CBD
Intercepted arc : CD

m∠ACB = 100o, find m∠BOC.
  • m∠ADB + m∠ACB = 180o
  • m∠ADB = 80o
m∠BOC = 2m∠ADB = 160o.

Given: AB passes through the center O, AD ≅AC
Prove: ∆ ABC ≅ ∆ ABD
  • Statements; Reasons
  • AB passes through the center O; Given
  • m∠ACB = m∠ADB = 90o; If an inscribed angle intercepts a semicircle, then the angle is a right angle
  • AD ≅ AC; Given
  • AD ≅ AC; If two arcs of same circle are ≅ ,then the corr. chords are ≅
  • AB ≅ AB ; Reflexive prop. of ( = )
  • ∆ ABC ≅ ∆ ABD ; HL
Statements; Reasons
AB passes through the center O; Given
m∠ACB = m∠ADB = 90o; If an inscribed angle intercepts a semicircle, then the angle is a right angle
AD ≅ AC; Given
AD ≅ AC; If two arcs of same circle are ≅ ,then the corr. chords are ≅
AB ≅ AB ; Reflexive prop. of ( = )
∆ ABC ≅ ∆ ABD ; HL
Determine whether the following statement is true or false.
The measure of an inscribed angle is always one half the measure of its intercepted arc.
True
Determine whether the following statement is true or false.
In a circle, if two inscribed angles have the same intercepted arc, then the two angles are congruent.
True

*These practice questions are only helpful when you work on them offline on a piece of paper and then use the solution steps function to check your answer.

Answer

Inscribed Angles

Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.

  • Intro 0:00
  • Inscribed Angles 0:07
    • Definition of Inscribed Angles
  • Inscribed Angles 0:58
    • Inscribed Angle Theorem 1
  • Inscribed Angles 3:29
    • Inscribed Angle Theorem 2
  • Inscribed Angles 4:38
    • Inscribed Angle Theorem 3
  • Inscribed Quadrilateral 5:50
    • Inscribed Quadrilateral
  • Extra Example 1: Central Angle, Inscribed Angle, and Intercepted Arc 7:02
  • Extra Example 2: Inscribed Angles 9:24
  • Extra Example 3: Inscribed Angles 14:00
  • Extra Example 4: Complete the Proof 17:58

Transcription: Inscribed Angles

Welcome back to Educator.com.0000

For this lesson, we are going to go over inscribed angles of circles.0002

An inscribed angle is an angle within a circle whose vertex is on the circle.0009

We know that the sides of the inscribed angles are chords (remember: chords, again, are segments whose endpoints lie on the circle).0017

So, the vertex and the sides of an inscribed angle are on the circle...and this is the angle, right there.0028

Remember: if this is the angle, then this arc that it is hugging is the intercepted arc.0040

From this point all the way to here--this arc is intercepted by this inscribed angle.0049

The inscribed angle is half the measure of the intercepted arc.0060

Now, we went over central angles; we know that central angles are angles whose vertex is on the center.0069

Be careful with central angles and inscribed angles.0077

The arc with the central angle are congruent; we know that the intercepted arc and the central angle have the same measure.0083

But the intercepted arc with the inscribed angle is different; the arc has double the measure of the inscribed angle.0092

If this arc measure, let's say (the measure of arc AB), is θ, then the measure of angle ACB is θ divided by 2.0102

This angle is half the measure of this arc; the measure of angle ACB is half the measure of the arc.0126

You just take the arc measure, and you divide it by 2 to get the inscribed angle.0147

Be careful: the biggest mistake with this, the most common mistake, would be: if the arc, let's say, is 100,0152

then this angle is 50; be careful that this is the bigger measure.0163

I have seen...if this is 100, then sometimes students make that mistake and make this 200--multiply it by 2,0173

thinking that this arc is half the measure of the angle; don't get that confused.0180

Make sure that the intercepted arc is double the angle, or that the angle is half the arc.0184

If this is θ, then the arc will be 2θ; if the arc is θ, then this would be 1/2θ.0195

Always just remember that the arc is bigger than the inscribed angle.0204

Now, if we have two inscribed angles with the same intercepted arc--here we have this black angle right here--0211

that is the inscribed angle; the intercepted arc is from here to here; and we have another inscribed angle, the red angle,0219

using the same intercepted arc; well, let's say that this has a measure of 100; if the arc has a measure of 100,0229

then this inscribed angle is 50 degrees; then this inscribed angle is also 50 degrees,0239

because it is 1/2 the measure of the intercepted arc, and they are both intercepting the same arc.0249

So then, these have to be congruent; all inscribed angles with the same intercepted arc are congruent.0255

Again, they are both inscribed angles with the same intercepted arc.0267

That means that these angles have to be congruent.0273

OK, if an inscribed angle of a circle intercepts a semicircle, then the angle is a right angle.0281

We know that, let's say, if you draw a diameter right there, that makes this a semicircle.0289

This semicircle has a measure of 180; this is the inscribed angle with this intercepted arc.0299

So, the inscribed angle intercepts a semicircle; since we know that the inscribed angle is half the measure of the intercepted arc,0311

well, if the intercepted arc is 180, then the inscribed angle has to have a measure of 90.0322

Remember: the inscribed angle is half, so if this is 180, then this has to be 90, which makes this a right angle.0328

Again, a semicircle is 180; half of that is 90, which makes that the measure of the inscribed angle; therefore, it is a right angle.0339

An inscribed quadrilateral: now, we know that an inscribed polygon is when a polygon is inside a circle,0353

with all of the vertices touching a circle; so here, we have a quadrilateral...0361

Now, this is not a rectangle; we know that it is nothing special; it is just a quadrilateral, inscribed.0366

If any type of quadrilateral is inscribed in a circle, opposite angles (angle B with angle D are opposite angles) are supplementary.0372

And angle C with angle A are going to be supplementary.0386

The measure of angle B, plus the measure of angle D, is going to equal 180.0392

The measure of angle C with the measure of angle A is also going to be 180.0400

We know that all four angles of a quadrilateral always add up to 360.0409

So then, these two, B and D, will add up to 180; and C and A will add up to 180.0414

Our examples: the first one: Name the central angle, the inscribed angle, and the intercepted arc.0424

Here, there are a couple of central angles here; but they are asking for the central angle and the inscribed angle that share the same intercepted arc.0434

Now, it doesn't matter; you can just name any central angle.0448

Here, I know that the central angle is when the angle is inside a circle with the vertex at the center ("central"--think of "center").0451

This one and this one are always confused a lot, so be careful; with central, the vertex is on the center;0467

an inscribed angle is the angle where the vertex is on the circle.0476

Central angle and intercepted arc have the same measure; the inscribed angle is half the measure of the intercepted arc.0482

Here is the central angle; the central angle is angle CPB.0492

I can also say angle APB--that is another one.0505

An inscribed angle is, again, an angle whose vertex is on the circle; that would be right there, angle CAB.0513

And then, the intercepted arc for each one: for the central angle CPB, the intercepted arc would be CB; that is the arc.0536

The intercepted arc for this one is arc AB; and then, for this one, it is going to be arc CB.0548

Find the value of x: the first one: we have a circle with an inscribed angle, and that is x; that is what we are looking for.0566

This side is a semicircle; this side is, also; so this intercepted arc with this arc is 92 degrees.0586

Since I know that the inscribed angle is half the measure of the intercepted arc, as long as I can find the measure of this arc, I can find x.0596

I am going to take 180 (because a semicircle is 180: this is 180, but I don't have to worry about that), minus the 92; then I will get this arc.0607

So, once I find this arc, then I can just divide that by 2 and get the inscribed angle.0621

180 - 92 is going to be 88; if this is 88, then what is x?0628

x is 88 times 2, or divided by 2? Well, remember again: the angle is smaller than the arc, so the inscribed angle is half.0645

So, it would be x = 88/2, which is 44; so that right there, that inscribed angle, has a measure of 44 degrees.0658

And the next one: they give us three angles of the inscribed quadrilateral in a circle.0675

I know that opposite (now, be careful here; it is not consecutive--it is opposite) angles of an inscribed quadrilateral are supplementary.0689

If I want to find x, then I have to use this angle and this angle here.0703

Be careful that you don't do 98 + this angle; again, it is not consecutive angles that are supplementary.0708

3x - 6 + x + 18 is going to be 180; so here, I have 4x + 12 is going to equal 180; 4x...if I subtract 12, I am going to get 168;0715

and then, if I divide the 4, then I am going to get 42; so x is 42.0749

Now, all they are asking for is the value of x, so that would be the answer.0759

But if they were asking us for the actual angle measure, then we would have to plug this number back in and solve for the angle.0764

This is not the angle measure; this is just x; so you would take the 42 and plug it back into this;0771

and for this angle measure, you are going to get 42 + 18 (I will just do that in red); 42 + 18 is going to give us 60 degrees; this one is 60.0778

And then, this one here: I can just subtract it from 180, because again, supplementary is what we used to find x.0796

You can say that this is going to be 180 - 60, which is 120; or if you want to just double-check your answer,0807

and just solve it out, even though you know it is going to be 120; just plug in x of 42 - 6.0814

3 times 42 is 126, minus the 6 is 120; so we know that that is correct.0827

For the next example, we are going to find the measure of each of these.0841

Here, I have the measure of arc DC, 60 degrees; I have, let's see, chords; I have a diameter; I have a radius; I have inscribed angles.0848

Here is an inscribed angle; here is an inscribed angle...central angles.0869

The first one: the measure of angle CPD--now, since this is the center, this angle, we know, is called a central angle,0877

because the vertex is on the center of the circle; so, central angles have the same measure as the intercepted arc.0891

If the intercepted arc is DC, and it has the measure of 60, then the measure of angle CPD has to also be 60 degrees.0905

The next one: the measure of arc BAC--it is this major arc here; we know that it is a major arc, because it gives us BAC, not just BC.0918

If they said BC, then it would be this arc right here, BC, the minor arc; but BAC is all the way around here.0932

And then, to find the measure of that...well, I have this little piece right here; do I have this and this?0939

Well, I don't what the measure of arc BA is; I don't know what the measure of arc AD is; but I know that together, this whole thing0949

is going to be 180, because it is a semicircle; so 180 + 60 is going to give us the measure of arc BAC;0962

so this is going to be 180 + 60, which is going to be 240.0974

And the last one, the measure of angle BAC: BAC is this angle; it is BAC, so this angle right here is what they are looking for.0987

We know that that is an inscribed angle; if that is an inscribed angle, the intercepted arc would be arc BC;1003

all of this right here is the intercepted arc for this angle here; so do we know the measure of the intercepted arc?1015

Well, they didn't tell us, but we can find it, because BCD, that arc, is a semicircle.1024

So, if this is 60, then this has to be 100 minus the 60; so this will be 120.1034

Then, the central angle here, BPC, is going to also be 120.1045

And then, what about this angle BAC--is it 2 times the intercepted arc, or half the intercepted arc?1052

We know that the inscribed angle is half the arc; so if this is 120, then the measure of angle BAC has to be 120/2, which is 60 degrees.1060

And the last example is going to be a proof: here is the center--the center is at P; what is given?1080

Arc BC is congruent to arc AD; so this is congruent to this; and prove that triangle BCP, this triangle here, is congruent to triangle ADP.1091

I am going to do a two-column proof with my statements and my reasons.1116

Now, remember that, since we are trying to prove that two triangles are congruent...1130

remember the unit where we had to use either Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, or Angle-Angle-Side.1137

We have to use one of these four theorems and postulate to prove that triangles are congruent.1152

That means one corresponding side, another corresponding side, and then a third corresponding side.1159

Those parts have to be congruent, and then we can prove that those triangles are congruent.1166

The first statement is going to be arc BC being congruent to arc AD; the reason for that is "given."1174

And the next step: if those arcs are congruent, then I know that these chords are congruent.1190

And these chords are parts of the triangles; so I am going to say that BC is congruent to AD.1203

And then, I am making them segments of the triangle; what is my reason?1218

It is the theorem that says that, if two arcs of the same circle are congruent, then corresponding chords are congruent.1225

I am just giving my reason there: this theorem that says that, if two arcs from the same circle (or from congruent circles)1256

are the same--are congruent--then their corresponding chords are congruent--that theorem doesn't have a name.1269

So, you just have to write it out; you can shorten it--I shortened it a little bit.1278

And then, the third one: that gives us a side, and they are all using sides; now, what else can I say?1284

I can say (here is a side; I am just going to put S there, so that way I know that I proved that one of the sides is congruent),1296

from these triangles, that these angles are congruent; so angle BPC is congruent to angle APD.1308

And my reason for that is "vertical angles are congruent"; any time that you have vertical angles, they are always congruent.1330

So then, there is an angle there; and then what else?--I need one more.1343

I have a side, and I have an angle; that means that I am not going to be using this one.1351

And for the next one, if these chords were parallel, then I could say that this angle is congruent to this angle, because they are alternate interior angles.1357

But I don't know that they are parallel, so I can't use that reason.1375

Now, what I can say, though, is that this angle here, angle B, is an inscribed angle.1383

I will just draw this so that it is easier to see; this is the inscribed angle, right here, with an intercepted arc CD.1395

This angle right here is an inscribed angle intercepting this arc; now, this angle here, angle A, is also an inscribed angle,1406

so this angle and this angle are both inscribed angles, intercepting the same arc.1423

What do we know about two inscribed angles with the same intercepted arc? They are congruent.1435

Just to make it easier to see, here is angle B, and here is angle A; this is the same, and this is the same, so they are congruent.1442

This one and this one...angle CBP is congruent to angle DAP (I wrote B), and the reason for that: "Inscribed..."1469

and again, this theorem doesn't have a name, so you just have to explain it "...angles with the same intercepted arc are congruent."1503

So, here is another angle; now, since we have two angles, and we have a side, this can either be this one or this one.1531

We have to see what the order is: is the side the included side from those?1544

We have Angle-Angle-Side; it wouldn't be Angle-Side-Angle, so it would be this one right here that we are using.1553

My fifth and final statement is going to be the statement right here: Triangle BCP is congruent to triangle ADP.1565

What is the reason for that? Angle-Angle-Side.1582

To review, the given was that this arc and this arc are congruent; since they are within the same circle,1594

their corresponding chords will be congruent; and that is what we used for the first one right here; that is a side.1602

Then, for the third one, we said that this angle and this angle are congruent, because they are vertical angles; and that is an angle, right there.1611

And then, we said that this angle B and angle A are congruent, because they are both inscribed angles intersecting the same arc.1622

It is like if this is, let's say, 80 degrees, the inscribed angle is half the intercepted arc; so if this is 80, then this has to be 40.1634

Well, this is also an inscribed angle with that same arc; so if this is 80, then this has to be 40.1647

So then, inscribed angles with the same intercepted arc are congruent, and that was the last piece that we needed to prove that the triangles are congruent.1653

And the rule is Angle-Angle-Side; that is it for this example.1661

And that is it for this lesson; thank you for watching Educator.com.1670

Educator®

Please sign in to participate in this lecture discussion.

Resetting Your Password?
OR

Start Learning Now

Our free lessons will get you started (Adobe Flash® required).
Get immediate access to our entire library.

Membership Overview

  • Available 24/7. Unlimited Access to Our Entire Library.
  • Search and jump to exactly what you want to learn.
  • *Ask questions and get answers from the community and our teachers!
  • Practice questions with step-by-step solutions.
  • Download lecture slides for taking notes.
  • Track your course viewing progress.
  • Accessible anytime, anywhere with our Android and iOS apps.