For more information, please see full course syllabus of AP Calculus AB
For more information, please see full course syllabus of AP Calculus AB
Discussion
Answer Engine
Download Lecture Slides
Table of Contents
Transcription
Slope Fields
Lecture Slides are screen-captured images of important points in the lecture. Students can download and print out these lecture slide images to do practice problems as well as take notes while watching the lecture.
- Intro 0:00
- Slope Fields 0:35
- Slope Fields
- Graphing the Slope Fields, Part 1
- Graphing the Slope Fields, Part 2
- Graphing the Slope Fields, Part 3
- Steps to Solving Slope Field Problems 20:24
- Example I: Draw or Generate the Slope Field of the Differential Equation y'=x cos y 22:38
AP Calculus AB Online Prep Course
Transcription: Slope Fields
Hello, welcome back to www.educator.com, and welcome back to AP Calculus.0000
Today, we are going to actually close out the course of AP Calculus formally.0005
This is going to be our last lesson.0010
We are going to be talking about slope fields.0013
For the last few lessons, we have been talking about differential equations, what they are.0015
We have taken a look at separation of variables.0019
We have taken a look at one particular type of differential equation, to get a feel for it.0022
Talk about qualitative solutions.0026
Now we are going to round it out with this thing called a slope field.0030
Let us jump right on in.0033
It is not always possible to solve a differential equation explicitly.0039
For certain types of differential equations like the ones that we dealt with, the separable ones,0044
yes, we can separate them, we can integrate and we can solve explicitly for a family of solutions.0049
Also, if we have an initial value, we can also find a particular solution.0055
But the truth is, most of the time in the real world, it is not possible to solve it explicitly.0059
But there are other techniques we can use and slope field is going to be one of those techniques.0064
Let us go ahead and work in blue.0073
It is not always possible to solve the de explicitly.0078
That is to find a nice formula that relates x and y, relating x and y.0100
y is some function of x.0119
It is not always possible.0121
In this lesson, we introduce a geometric graphical technique0123
that still allows us to extract information about the solution for a given differential equation.0149
Slope fields, let us look at a particular initial value problem.0185
Let us look at the following ivp.0199
Remember, an initial value problem consists of a differential equation and it also consists of an initial value.0207
For some value of x, we know that it is this y.0215
In this particular case, y(0) = 3.0221
We know that this differential equation, whatever solution we come up with,0224
if we happen to be able to come up with one, when x is 0, the y value is going to be 3.0229
It is going to pass through that point.0234
Let me write this as dy dx which is, y’ = x + y and y(0) = 3.0238
This equation is not separable.0251
There is really not much we can do with it.0253
This equation, at least at this level, this equation is not separable.0256
We cannot solve, in other words, we cannot integrate for an explicit solution.0269
What this differential equation is saying is the following.0289
Again, it is always nice, when you are faced with any kind of equation, any kind of formula,0292
to ask yourself what is actually going on.0296
Let me go ahead and move to the next page and rewrite the equation up here.0302
I have got dy dx is equal to x + y.0306
This de says the following.0311
At a given point xy, the slope of the solution curve y(x) is x + y.0321
Now we know that when we solve a particular differential equation, we are going get some function of x.0351
It is going to be something like, let us say y = sin(x), whatever it is.0355
This is just an example.0361
It is going to be some function of x.0362
y expressed as a function of x is just a curve.0365
We know that, we have been dealing with them for years and years.0367
There you have it, it is a curve.0375
What this is telling me dy dx, we know that the derivative is a slope.0377
It is telling me that the derivative of whatever function it is that I'm trying to find, y(x),0383
its derivative which is its slope, at a particular point xy is actually equal to the x value + the y value.0391
A differential equation actually gives me a way of finding the slope of the curve at that point.0399
What I'm going to do, what we are going to do in slope field is we are going to plot out a bunch of points.0407
We are going to make little marks representing that slope.0411
And then, we are going to follow those little marks and actually draw out a solution curve graphically, instead of solving for it explicitly.0414
That is what is going on.0421
Let us reiterate, if we can.0424
If we could graph y(x), the solution in the xy plane,0427
its slope at various points xy is given by x + y.0442
I can point 5,4, the slope of the curve, as it passes through 5,4 is going to be 5 + 4.0460
It is going to be 9.0469
We know that the curve is actually headed pretty steeply up, that is all this is saying.0471
That is all a differential equation really is.0476
Now what we want to do is, let us see if we can recover the graph.0479
If we can recover the graph of y(x) pictorially, instead of explicitly, analytically.0485
Let us see if we can recover the graphs by plotting the slopes at various points.0498
Let me draw a little xy coordinate system.0517
Here is our differential equation, let me rewrite it down here.0525
I’m going to rewrite it in red.0527
We have y’ = x + y.0529
If I take the point 0,0, the point 0,0, if I put y’ at 0,0 is equal to 0 + 0 which is 0,0534
which means that at that point, my slope is horizontal.0544
I’m going to put a little dash representing this slope.0549
As if I'm literally drawing the tangent line at the curve, except I’m not drawing an entire tangent line, I’m just drawing a piece of the tangent line.0552
Now I know that when the curve passes through 0,0, actually it is going to just touch it.0560
It is going to have a slope of 0 at that point.0567
Let us try the point 1,0.0571
Let us make this 1, 2, 3.0573
Let us go -1, -2, -3.0577
Let us go 1, 2, 3, up, -1, -2, and -3.0580
At the point 1,0, the derivative is 1 + 0, it is 1.0585
It looks like this.0591
At the point 2,0, the slope is going to be 2.0594
It is going to be a little steeper like that.0598
Let us go over here to 0,1 is going to be 0 + 1.0600
At the point 0,1, the slope of the curve is going to be 1.0605
0,2 is going to be 2, it is going to be a lot steeper.0610
How about -1,0, at the point -1,0, the slope is -1 + 0 is -1.0615
It looks like this.0621
For 0 and -1, -1.0625
For -2,0, it is -2.0629
0 and -2 is -2.0633
Let us go 1,1, at the point 1,1, the slope is 1 + 1, it is 2.0635
I do this for all the different points of the xy plane.0642
When I do that, I get this field of slopes.0647
I'm going to get a bunch of lines everywhere, of different slopes, whatever they happen to be, based on the differential equation.0651
What this does, let us look at what this actually looks like.0661
I used a piece of software, just an online slope field generator.0667
This is what it actually looks like, when I plot the fields.0671
This is what it looks like.0677
At all these different points in the xy plane, in this particular case, we went from x value -5 to 5, y value -5 to 5.0678
At all the different points, we put little dashes.0689
In this particular case, the particular piece of software that I use, instead of short dashes, it actually uses arrows.0692
I personally prefer the arrows, it is totally up to you.0700
There are other generators online that just do the dashes like we did before.0702
I will show you one of those, in just a minute.0706
What is happening here is this, this is a pictorial representation of the slope field of the differential equation.0708
Our initial value problem was the following.0717
The initial value problem was y’ = x + y, that is the slope field that we see here.0722
We said y(0) is equal to, I cannot remember if it was 1 or 3.0729
It actually does not really matter.0741
In this particular case, we are going to go to 0,1.0742
0, it looks like 1 is somewhere around right there.0746
We know that the curve passes through that point.0751
What does the curve look like?0754
Follow the trajectories of the slope fields.0755
It is going to look something like this.0760
I know it pass through here, I know it goes up like that.0762
Here, it looks like it comes down and goes up, there you go.0767
Just by following the arrows nearby, here, this arrow is pointing this way.0774
We will go that way.0780
This arrow is pointing that way.0782
We just follow the arrows and it gives us a general trajectory of the particular curve.0783
I was not able to solve for this explicitly, I do not know what this curve is, in terms of y as a function of x.0789
But I do have an idea of what it looks like.0797
In fact, I have an idea what the entire family looks like.0799
The arrows or the dashes give you various trajectories for the general solution, in other words, the family of curves.0807
What you had here, depending on what you want to follow, just follow along.0838
Those are the family of curves.0856
For a particular initial value problem, you pick the point that it passes through and0858
you draw a particular curve that looks like it satisfies at following the arrows.0863
That is all that is happening here.0867
Let us go here, we have an extra one.0874
Again, what you have is, just follow the arrows, that is all you are doing.0884
Just follow the arrows, that will give you a nice family of curves.0889
You just have to take a couple of minutes to see which way the arrows are going but nothing particularly strange.0901
You know in this particular case, all of these curves tend to be coming near, they tend to stabilize right about there.0908
They all seem to be coming from there, and then, diverging and going in whenever direction that they need to be going in.0915
We said that, in this particular case, the particular piece of software that I use online,0923
the slope generator that I use uses arrows.0929
I personally like the arrows, but most of them actually just have dashes and they look like this.0931
This is the same slope field except without the arrows, just the dashes.0938
Notice it looks exactly the same.0942
You just have to follow the slopes to draw out a particular curve.0944
The arrows are just reminders that in general, we proceed from left to right.0951
In general, we go from negative x to positive x.0982
We are going in this direction.0984
Some curve is going to start from the left and it is going to come and it is going to head out to the right.0986
It is totally a personal choice.0991
Again, I personally prefer the arrows, you might prefer something else.0995
I want to go ahead and give you the web site for the slope field generator that I use,1000
the one with the arrows and it is as follows.1004
Www.math.missouri.edu/~bartonae/dfield.html.1011
It actually looks as follows, when you pull it up.1043
This is actually what it looks like.1046
It is actually right up there.1051
Basically what this does is, it allows you to pick,1053
You enter your differential equation there.1057
In this particular slope field generator, you have to be very explicit.1059
If I had something like y’ = let us say x³ + y, I would not actually enter this up here as x³ + y.1064
I have to be very explicitly, I would actually enter this as x × x × x.1081
I have to use a little times symbol, the * symbol, + y.1086
Whenever you have trigonometric functions like sin(x),1091
you have to actually put the parentheses sin(x), and that explains right here.1095
That is the only thing again.1100
Now the differential equation is going to be altogether strange and difficult.1101
You enter the differential equation there.1105
You pick your x min, your x max.1107
It allows you to pick your y min and y max.1110
It also allows you to pick the length of your arrows.1113
It is nice to play around with different lengths of arrows.1117
In this particular case, I have a length of 15, whatever the unit happens to be.1119
The length of the arrow, of course, it also allows you to choose the number of arrows per horizontal and vertical distance.1124
In this case, it is 25, that means there are 25 arrows here and 25 arrows vertically.1130
Playing with these numbers will give you different pictures, different degrees of density.1136
I think it is a great idea to play with that because sometimes more arrows will make the solution more clear.1142
Less arrows will make it more clear, longer errors will make it more clear.1148
Shorter arrows might make it more clear.1153
The one thing that is interesting about this particular slope field generator is they actually,1157
if you check this, it allows you to choose variable length arrows.1161
What that does is, as the slope gets steeper, notice in this case, here we have a slope of let us say 0,1167
over here we have a slope of let us say 2, here we have a slope of maybe 8, 6 or 7 or 8.1174
The arrows, the length of the arrow is proportional to the slope.1179
Here is going to be a very short arrow.1184
Here is going to be a longer arrow.1186
Here it is going to be a huge arrow.1188
If you want to take a look at what that looks like, again, you can, just play with it.1191
That is about it.1196
Some of your homework assignments, you may have to do this by hand.1199
But in general, just go ahead and use a slope field generator.1201
It is a wonderful tool, that is what these tools are there for.1204
We do not want to just use technology for the sake of using technology.1208
But in this particular case, it is very appropriate.1211
Otherwise, we are just going to be there forever, writing these things out.1214
Let us take a look at, basically that is it.1220
Essentially, all you have to do is plot the slope field and follow the slopes.1230
Just follow the slopes or the arrows, whichever you like, through the field for the various solutions.1247
It gives you a geometric solution.1267
You have the curve, you do not have the analytic function but you have the curve.1271
For all practical purposes, for most applied purposes, really, all you need is the curve.1276
Again, the truth is, in real life, those of you who would actually go on to science and engineering work,1281
in your professional work, you are going to do things numerically.1286
It is going to be pretty rare that you actually end up solving a differential equation explicitly1292
and being able to use it to predict the behavior, during other times or other places in space.1296
You are going to use a slope field or you are going to use some numerical procedure.1303
Follow the slopes and arrows through the field for the various solutions.1310
y as a function of x, that would be nice if I actually printed properly.1317
For an initial value problem, if you are actually given an initial value in addition to the differential equation,1324
you plot the y(x) that passes through the given initial value.1331
The given initial value will be y of some x0 is equal to y0.1346
Let us go ahead and do a quick example.1358
Draw or generate the slope field for the differential equation y’ = x cos y.1360
Graph at least three particular solutions for this differential equation.1366
There is nothing to actually do, as far as writing it out by hand for us.1370
I just enter this into the slope field generator and what I got was the following.1374
That is the slope field generator.1380
I set my x, max and min to -10 to 10.1381
I did -10 to 10 on y, I picked an arrow length of 15 and I picked 30 arrows per horizontal and vertical distance.1385
I decided not to go with the variable length arrows.1393
This is what I got.1397
Essentially, what is happening is this.1398
Draw out some solutions.1403
It looks like this, all of a sudden jumps up from here and jumps down from here.1405
Chances are there is some equilibrium solution.1410
Just follow the arrows.1414
There, that is a particular solution.1418
That is it, that is all you are doing.1431
It is all a differential equation is.1434
A differential equation is just a slope field.1435
It tells you that at a given point xy in the plane, the slope of the curve is that number, whatever it is.1438
In this particular case, it was x cos y, y’ = x cos y, that is all.1449
Thank you so much for joining us here at www.educator.com.1460
Once again, this was the final lesson of the AP calculus, formally.1464
After this, we are going to start working completely through some practice AP calculus exams.1468
Thank you so much for joining us, we will see you next time, bye.1475

Raffi Hovasapian
Slope Fields
Slide Duration:Table of Contents
42m 8s
- Intro0:00
- Overview & Slopes of Curves0:21
- Differential and Integral0:22
- Fundamental Theorem of Calculus6:36
- Differentiation or Taking the Derivative14:24
- What Does the Derivative Mean and How do We Find it?15:18
- Example: f'(x)19:24
- Example: f(x) = sin (x)29:16
- General Procedure for Finding the Derivative of f(x)37:33
50m 53s
- Intro0:00
- Slope of the Secant Line along a Curve0:12
- Slope of the Tangent Line to f(x) at a Particlar Point0:13
- Slope of the Secant Line along a Curve2:59
- Instantaneous Slope6:51
- Instantaneous Slope6:52
- Example: Distance, Time, Velocity13:32
- Instantaneous Slope and Average Slope25:42
- Slope & Rate of Change29:55
- Slope & Rate of Change29:56
- Example: Slope = 233:16
- Example: Slope = 4/334:32
- Example: Slope = 4 (m/s)39:12
- Example: Density = Mass / Volume40:33
- Average Slope, Average Rate of Change, Instantaneous Slope, and Instantaneous Rate of Change47:46
59m 12s
- Intro0:00
- Example I: Water Tank0:13
- Part A: Which is the Independent Variable and Which is the Dependent?2:00
- Part B: Average Slope3:18
- Part C: Express These Slopes as Rates-of-Change9:28
- Part D: Instantaneous Slope14:54
- Example II: y = √(x-3)28:26
- Part A: Calculate the Slope of the Secant Line30:39
- Part B: Instantaneous Slope41:26
- Part C: Equation for the Tangent Line43:59
- Example III: Object in the Air49:37
- Part A: Average Velocity50:37
- Part B: Instantaneous Velocity55:30
18m 43s
- Intro0:00
- Desmos Tutorial1:42
- Desmos Tutorial1:43
- Things You Must Learn To Do on Your Particular Calculator2:39
- Things You Must Learn To Do on Your Particular Calculator2:40
- Example I: y=sin x4:54
- Example II: y=x³ and y = d/(dx) (x³)9:22
- Example III: y = x² {-5 <= x <= 0} and y = cos x {0 < x < 6}13:15
51m 53s
- Intro0:00
- The Limit of a Function0:14
- The Limit of a Function0:15
- Graph: Limit of a Function12:24
- Table of Values16:02
- lim x→a f(x) Does not Say What Happens When x = a20:05
- Example I: f(x) = x²24:34
- Example II: f(x) = 727:05
- Example III: f(x) = 4.530:33
- Example IV: f(x) = 1/x34:03
- Example V: f(x) = 1/x²36:43
- The Limit of a Function, Cont.38:16
- Infinity and Negative Infinity38:17
- Does Not Exist42:45
- Summary46:48
24m 43s
- Intro0:00
- Example I: Explain in Words What the Following Symbols Mean0:10
- Example II: Find the Following Limit5:21
- Example III: Use the Graph to Find the Following Limits7:35
- Example IV: Use the Graph to Find the Following Limits11:48
- Example V: Sketch the Graph of a Function that Satisfies the Following Properties15:25
- Example VI: Find the Following Limit18:44
- Example VII: Find the Following Limit20:06
53m 48s
- Intro0:00
- Plug-in Procedure0:09
- Plug-in Procedure0:10
- Limit Laws9:14
- Limit Law 110:05
- Limit Law 210:54
- Limit Law 311:28
- Limit Law 411:54
- Limit Law 512:24
- Limit Law 613:14
- Limit Law 714:38
- Plug-in Procedure, Cont.16:35
- Plug-in Procedure, Cont.16:36
- Example I: Calculating Limits Mathematically20:50
- Example II: Calculating Limits Mathematically27:37
- Example III: Calculating Limits Mathematically31:42
- Example IV: Calculating Limits Mathematically35:36
- Example V: Calculating Limits Mathematically40:58
- Limits Theorem44:45
- Limits Theorem 144:46
- Limits Theorem 2: Squeeze Theorem46:34
- Example VI: Calculating Limits Mathematically49:26
21m 22s
- Intro0:00
- Example I: Evaluate the Following Limit by Showing Each Application of a Limit Law0:16
- Example II: Evaluate the Following Limit1:51
- Example III: Evaluate the Following Limit3:36
- Example IV: Evaluate the Following Limit8:56
- Example V: Evaluate the Following Limit11:19
- Example VI: Calculating Limits Mathematically13:19
- Example VII: Calculating Limits Mathematically14:59
50m 1s
- Intro0:00
- Limit as x Goes to Infinity0:14
- Limit as x Goes to Infinity0:15
- Let's Look at f(x) = 1 / (x-3)1:04
- Summary9:34
- Example I: Calculating Limits as x Goes to Infinity12:16
- Example II: Calculating Limits as x Goes to Infinity21:22
- Example III: Calculating Limits as x Goes to Infinity24:10
- Example IV: Calculating Limits as x Goes to Infinity36:00
36m 31s
- Intro0:00
- Example I: Calculating Limits as x Goes to Infinity0:14
- Example II: Calculating Limits as x Goes to Infinity3:27
- Example III: Calculating Limits as x Goes to Infinity8:11
- Example IV: Calculating Limits as x Goes to Infinity14:20
- Example V: Calculating Limits as x Goes to Infinity20:07
- Example VI: Calculating Limits as x Goes to Infinity23:36
53m
- Intro0:00
- Definition of Continuity0:08
- Definition of Continuity0:09
- Example: Not Continuous3:52
- Example: Continuous4:58
- Example: Not Continuous5:52
- Procedure for Finding Continuity9:45
- Law of Continuity13:44
- Law of Continuity13:45
- Example I: Determining Continuity on a Graph15:55
- Example II: Show Continuity & Determine the Interval Over Which the Function is Continuous17:57
- Example III: Is the Following Function Continuous at the Given Point?22:42
- Theorem for Composite Functions25:28
- Theorem for Composite Functions25:29
- Example IV: Is cos(x³ + ln x) Continuous at x=π/2?27:00
- Example V: What Value of A Will make the Following Function Continuous at Every Point of Its Domain?34:04
- Types of Discontinuity39:18
- Removable Discontinuity39:33
- Jump Discontinuity40:06
- Infinite Discontinuity40:32
- Intermediate Value Theorem40:58
- Intermediate Value Theorem: Hypothesis & Conclusion40:59
- Intermediate Value Theorem: Graphically43:40
- Example VI: Prove That the Following Function Has at Least One Real Root in the Interval [4,6]47:46
40m 2s
- Intro0:00
- Derivative0:09
- Derivative0:10
- Example I: Find the Derivative of f(x)=x³2:20
- Notations for the Derivative7:32
- Notations for the Derivative7:33
- Derivative & Rate of Change11:14
- Recall the Rate of Change11:15
- Instantaneous Rate of Change17:04
- Graphing f(x) and f'(x)19:10
- Example II: Find the Derivative of x⁴ - x²24:00
- Example III: Find the Derivative of f(x)=√x30:51
53m 45s
- Intro0:00
- Example I: Find the Derivative of (2+x)/(3-x)0:18
- Derivatives II9:02
- f(x) is Differentiable if f'(x) Exists9:03
- Recall: For a Limit to Exist, Both Left Hand and Right Hand Limits Must Equal to Each Other17:19
- Geometrically: Differentiability Means the Graph is Smooth18:44
- Example II: Show Analytically that f(x) = |x| is Nor Differentiable at x=020:53
- Example II: For x > 023:53
- Example II: For x < 025:36
- Example II: What is f(0) and What is the lim |x| as x→0?30:46
- Differentiability & Continuity34:22
- Differentiability & Continuity34:23
- How Can a Function Not be Differentiable at a Point?39:38
- How Can a Function Not be Differentiable at a Point?39:39
- Higher Derivatives41:58
- Higher Derivatives41:59
- Derivative Operator45:12
- Example III: Find (dy)/(dx) & (d²y)/(dx²) for y = x³49:29
31m 38s
- Intro0:00
- Example I: Sketch f'(x)0:10
- Example II: Sketch f'(x)2:14
- Example III: Find the Derivative of the Following Function sing the Definition3:49
- Example IV: Determine f, f', and f'' on a Graph12:43
- Example V: Find an Equation for the Tangent Line to the Graph of the Following Function at the Given x-value13:40
- Example VI: Distance vs. Time20:15
- Example VII: Displacement, Velocity, and Acceleration23:56
- Example VIII: Graph the Displacement Function28:20
47m 35s
- Intro0:00
- Differentiation of Polynomials & Exponential Functions0:15
- Derivative of a Function0:16
- Derivative of a Constant2:35
- Power Rule3:08
- If C is a Constant4:19
- Sum Rule5:22
- Exponential Functions6:26
- Example I: Differentiate7:45
- Example II: Differentiate12:38
- Example III: Differentiate15:13
- Example IV: Differentiate16:20
- Example V: Differentiate19:19
- Example VI: Find the Equation of the Tangent Line to a Function at a Given Point12:18
- Example VII: Find the First & Second Derivatives25:59
- Example VIII27:47
- Part A: Find the Velocity & Acceleration Functions as Functions of t27:48
- Part B: Find the Acceleration after 3 Seconds30:12
- Part C: Find the Acceleration when the Velocity is 030:53
- Part D: Graph the Position, Velocity, & Acceleration Graphs32:50
- Example IX: Find a Cubic Function Whose Graph has Horizontal Tangents34:53
- Example X: Find a Point on a Graph42:31
47m 25s
- Intro0:00
- The Product, Power and Quotient Rules0:19
- Differentiate Functions0:20
- Product Rule5:30
- Quotient Rule9:15
- Power Rule10:00
- Example I: Product Rule13:48
- Example II: Quotient Rule16:13
- Example III: Power Rule18:28
- Example IV: Find dy/dx19:57
- Example V: Find dy/dx24:53
- Example VI: Find dy/dx28:38
- Example VII: Find an Equation for the Tangent to the Curve34:54
- Example VIII: Find d²y/dx²38:08
41m 8s
- Intro0:00
- Derivatives of the Trigonometric Functions0:09
- Let's Find the Derivative of f(x) = sin x0:10
- Important Limits to Know4:59
- d/dx (sin x)6:06
- d/dx (cos x)6:38
- d/dx (tan x)6:50
- d/dx (csc x)7:02
- d/dx (sec x)7:15
- d/dx (cot x)7:27
- Example I: Differentiate f(x) = x² - 4 cos x7:56
- Example II: Differentiate f(x) = x⁵ tan x9:04
- Example III: Differentiate f(x) = (cos x) / (3 + sin x)10:56
- Example IV: Differentiate f(x) = e^x / (tan x - sec x)14:06
- Example V: Differentiate f(x) = (csc x - 4) / (cot x)15:37
- Example VI: Find an Equation of the Tangent Line21:48
- Example VII: For What Values of x Does the Graph of the Function x + 3 cos x Have a Horizontal Tangent?25:17
- Example VIII: Ladder Problem28:23
- Example IX: Evaluate33:22
- Example X: Evaluate36:38
24m 56s
- Intro0:00
- The Chain Rule0:13
- Recall the Composite Functions0:14
- Derivatives of Composite Functions1:34
- Example I: Identify f(x) and g(x) and Differentiate6:41
- Example II: Identify f(x) and g(x) and Differentiate9:47
- Example III: Differentiate11:03
- Example IV: Differentiate f(x) = -5 / (x² + 3)³12:15
- Example V: Differentiate f(x) = cos(x² + c²)14:35
- Example VI: Differentiate f(x) = cos⁴x +c²15:41
- Example VII: Differentiate17:03
- Example VIII: Differentiate f(x) = sin(tan x²)19:01
- Example IX: Differentiate f(x) = sin(tan² x)21:02
25m 32s
- Intro0:00
- Example I: Differentiate f(x) = sin(cos(tanx))0:38
- Example II: Find an Equation for the Line Tangent to the Given Curve at the Given Point2:25
- Example III: F(x) = f(g(x)), Find F' (6)4:22
- Example IV: Differentiate & Graph both the Function & the Derivative in the Same Window5:35
- Example V: Differentiate f(x) = ( (x-8)/(x+3) )⁴10:18
- Example VI: Differentiate f(x) = sec²(12x)12:28
- Example VII: Differentiate14:41
- Example VIII: Differentiate19:25
- Example IX: Find an Expression for the Rate of Change of the Volume of the Balloon with Respect to Time21:13
52m 31s
- Intro0:00
- Implicit Differentiation0:09
- Implicit Differentiation0:10
- Example I: Find (dy)/(dx) by both Implicit Differentiation and Solving Explicitly for y12:15
- Example II: Find (dy)/(dx) of x³ + x²y + 7y² = 1419:18
- Example III: Find (dy)/(dx) of x³y² + y³x² = 4x21:43
- Example IV: Find (dy)/(dx) of the Following Equation24:13
- Example V: Find (dy)/(dx) of 6sin x cos y = 129:00
- Example VI: Find (dy)/(dx) of x² cos² y + y sin x = 2sin x cos y31:02
- Example VII: Find (dy)/(dx) of √(xy) = 7 + y²e^x37:36
- Example VIII: Find (dy)/(dx) of 4(x²+y²)² = 35(x²-y²)41:03
- Example IX: Find (d²y)/(dx²) of x² + y² = 2544:05
- Example X: Find (d²y)/(dx²) of sin x + cos y = sin(2x)47:48
47m 34s
- Intro0:00
- Linear Approximations & Differentials0:09
- Linear Approximations & Differentials0:10
- Example I: Linear Approximations & Differentials11:27
- Example II: Linear Approximations & Differentials20:19
- Differentials30:32
- Differentials30:33
- Example III: Linear Approximations & Differentials34:09
- Example IV: Linear Approximations & Differentials35:57
- Example V: Relative Error38:46
45m 33s
- Intro0:00
- Related Rates0:08
- Strategy for Solving Related Rates Problems #10:09
- Strategy for Solving Related Rates Problems #21:46
- Strategy for Solving Related Rates Problems #32:06
- Strategy for Solving Related Rates Problems #42:50
- Strategy for Solving Related Rates Problems #53:38
- Example I: Radius of a Balloon5:15
- Example II: Ladder12:52
- Example III: Water Tank19:08
- Example IV: Distance between Two Cars29:27
- Example V: Line-of-Sight36:20
37m 17s
- Intro0:00
- Example I: Shadow0:14
- Example II: Particle4:45
- Example III: Water Level10:28
- Example IV: Clock20:47
- Example V: Distance between a House and a Plane29:11
40m 44s
- Intro0:00
- Maximum & Minimum Values of a Function, Part 10:23
- Absolute Maximum2:20
- Absolute Minimum2:52
- Local Maximum3:38
- Local Minimum4:26
- Maximum & Minimum Values of a Function, Part 26:11
- Function with Absolute Minimum but No Absolute Max, Local Max, and Local Min7:18
- Function with Local Max & Min but No Absolute Max & Min8:48
- Formal Definitions10:43
- Absolute Maximum11:18
- Absolute Minimum12:57
- Local Maximum14:37
- Local Minimum16:25
- Extreme Value Theorem18:08
- Theorem: f'(c) = 024:40
- Critical Number (Critical Value)26:14
- Procedure for Finding the Critical Values of f(x)28:32
- Example I: Find the Critical Values of f(x) x + sinx29:51
- Example II: What are the Absolute Max & Absolute Minimum of f(x) = x + 4 sinx on [0,2π]35:31
40m 44s
- Intro0:00
- Example I: Identify Absolute and Local Max & Min on the Following Graph0:11
- Example II: Sketch the Graph of a Continuous Function3:11
- Example III: Sketch the Following Graphs4:40
- Example IV: Find the Critical Values of f (x) = 3x⁴ - 7x³ + 4x²6:13
- Example V: Find the Critical Values of f(x) = |2x - 5|8:42
- Example VI: Find the Critical Values11:42
- Example VII: Find the Critical Values f(x) = cos²(2x) on [0,2π]16:57
- Example VIII: Find the Absolute Max & Min f(x) = 2sinx + 2cos x on [0,(π/3)]20:08
- Example IX: Find the Absolute Max & Min f(x) = (ln(2x)) / x on [1,3]24:39
25m 54s
- Intro0:00
- Rolle's Theorem0:08
- Rolle's Theorem: If & Then0:09
- Rolle's Theorem: Geometrically2:06
- There May Be More than 1 c Such That f'( c ) = 03:30
- Example I: Rolle's Theorem4:58
- The Mean Value Theorem9:12
- The Mean Value Theorem: If & Then9:13
- The Mean Value Theorem: Geometrically11:07
- Example II: Mean Value Theorem13:43
- Example III: Mean Value Theorem21:19
25m 54s
- Intro0:00
- Using Derivatives to Graph Functions, Part I0:12
- Increasing/ Decreasing Test0:13
- Example I: Find the Intervals Over Which the Function is Increasing & Decreasing3:26
- Example II: Find the Local Maxima & Minima of the Function19:18
- Example III: Find the Local Maxima & Minima of the Function31:39
44m 58s
- Intro0:00
- Using Derivatives to Graph Functions, Part II0:13
- Concave Up & Concave Down0:14
- What Does This Mean in Terms of the Derivative?6:14
- Point of Inflection8:52
- Example I: Graph the Function13:18
- Example II: Function x⁴ - 5x²19:03
- Intervals of Increase & Decrease19:04
- Local Maxes and Mins25:01
- Intervals of Concavity & X-Values for the Points of Inflection29:18
- Intervals of Concavity & Y-Values for the Points of Inflection34:18
- Graphing the Function40:52
49m 19s
- Intro0:00
- Example I: Intervals, Local Maxes & Mins0:26
- Example II: Intervals, Local Maxes & Mins5:05
- Example III: Intervals, Local Maxes & Mins, and Inflection Points13:40
- Example IV: Intervals, Local Maxes & Mins, Inflection Points, and Intervals of Concavity23:02
- Example V: Intervals, Local Maxes & Mins, Inflection Points, and Intervals of Concavity34:36
59m 1s
- Intro0:00
- Example I: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes0:11
- Example II: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes21:24
- Example III: Cubic Equation f(x) = Ax³ + Bx² + Cx + D37:56
- Example IV: Intervals, Local Maxes & Mins, Inflection Points, Intervals of Concavity, and Asymptotes46:19
30m 9s
- Intro0:00
- L'Hospital's Rule0:19
- Indeterminate Forms0:20
- L'Hospital's Rule3:38
- Example I: Evaluate the Following Limit Using L'Hospital's Rule8:50
- Example II: Evaluate the Following Limit Using L'Hospital's Rule10:30
- Indeterminate Products11:54
- Indeterminate Products11:55
- Example III: L'Hospital's Rule & Indeterminate Products13:57
- Indeterminate Differences17:00
- Indeterminate Differences17:01
- Example IV: L'Hospital's Rule & Indeterminate Differences18:57
- Indeterminate Powers22:20
- Indeterminate Powers22:21
- Example V: L'Hospital's Rule & Indeterminate Powers25:13
38m 14s
- Intro0:00
- Example I: Evaluate the Following Limit0:17
- Example II: Evaluate the Following Limit2:45
- Example III: Evaluate the Following Limit6:54
- Example IV: Evaluate the Following Limit8:43
- Example V: Evaluate the Following Limit11:01
- Example VI: Evaluate the Following Limit14:48
- Example VII: Evaluate the Following Limit17:49
- Example VIII: Evaluate the Following Limit20:37
- Example IX: Evaluate the Following Limit25:16
- Example X: Evaluate the Following Limit32:44
49m 59s
- Intro0:00
- Example I: Find the Dimensions of the Box that Gives the Greatest Volume1:23
- Fundamentals of Optimization Problems18:08
- Fundamental #118:33
- Fundamental #219:09
- Fundamental #319:19
- Fundamental #420:59
- Fundamental #521:55
- Fundamental #623:44
- Example II: Demonstrate that of All Rectangles with a Given Perimeter, the One with the Largest Area is a Square24:36
- Example III: Find the Points on the Ellipse 9x² + y² = 9 Farthest Away from the Point (1,0)35:13
- Example IV: Find the Dimensions of the Rectangle of Largest Area that can be Inscribed in a Circle of Given Radius R43:10
55m 10s
- Intro0:00
- Example I: Optimization Problem0:13
- Example II: Optimization Problem17:34
- Example III: Optimization Problem35:06
- Example IV: Revenue, Cost, and Profit43:22
30m 22s
- Intro0:00
- Newton's Method0:45
- Newton's Method0:46
- Example I: Find x2 and x313:18
- Example II: Use Newton's Method to Approximate15:48
- Example III: Find the Root of the Following Equation to 6 Decimal Places19:57
- Example IV: Use Newton's Method to Find the Coordinates of the Inflection Point23:11
55m 26s
- Intro0:00
- Antiderivatives0:23
- Definition of an Antiderivative0:24
- Antiderivative Theorem7:58
- Function & Antiderivative12:10
- x^n12:30
- 1/x13:00
- e^x13:08
- cos x13:18
- sin x14:01
- sec² x14:11
- secxtanx14:18
- 1/√(1-x²)14:26
- 1/(1+x²)14:36
- -1/√(1-x²)14:45
- Example I: Find the Most General Antiderivative for the Following Functions15:07
- Function 1: f(x) = x³ -6x² + 11x - 915:42
- Function 2: f(x) = 14√(x) - 27 4√x19:12
- Function 3: (fx) = cos x - 14 sinx20:53
- Function 4: f(x) = (x⁵+2√x )/( x^(4/3) )22:10
- Function 5: f(x) = (3e^x) - 2/(1+x²)25:42
- Example II: Given the Following, Find the Original Function f(x)26:37
- Function 1: f'(x) = 5x³ - 14x + 24, f(2) = 4027:55
- Function 2: f'(x) 3 sinx + sec²x, f(π/6) = 530:34
- Function 3: f''(x) = 8x - cos x, f(1.5) = 12.7, f'(1.5) = 4.232:54
- Function 4: f''(x) = 5/(√x), f(2) 15, f'(2) = 737:54
- Example III: Falling Object41:58
- Problem 1: Find an Equation for the Height of the Ball after t Seconds42:48
- Problem 2: How Long Will It Take for the Ball to Strike the Ground?48:30
- Problem 3: What is the Velocity of the Ball as it Hits the Ground?49:52
- Problem 4: Initial Velocity of 6 m/s, How Long Does It Take to Reach the Ground?50:46
51m 3s
- Intro0:00
- The Area Under a Curve0:13
- Approximate Using Rectangles0:14
- Let's Do This Again, Using 4 Different Rectangles9:40
- Approximate with Rectangles16:10
- Left Endpoint18:08
- Right Endpoint25:34
- Left Endpoint vs. Right Endpoint30:58
- Number of Rectangles34:08
- True Area37:36
- True Area37:37
- Sigma Notation & Limits43:32
- When You Have to Explicitly Solve Something47:56
33m 7s
- Intro0:00
- Example I: Using Left Endpoint & Right Endpoint to Approximate Area Under a Curve0:10
- Example II: Using 5 Rectangles, Approximate the Area Under the Curve11:32
- Example III: Find the True Area by Evaluating the Limit Expression16:07
- Example IV: Find the True Area by Evaluating the Limit Expression24:52
43m 19s
- Intro0:00
- The Definite Integral0:08
- Definition to Find the Area of a Curve0:09
- Definition of the Definite Integral4:08
- Symbol for Definite Integral8:45
- Regions Below the x-axis15:18
- Associating Definite Integral to a Function19:38
- Integrable Function27:20
- Evaluating the Definite Integral29:26
- Evaluating the Definite Integral29:27
- Properties of the Definite Integral35:24
- Properties of the Definite Integral35:25
32m 14s
- Intro0:00
- Example I: Approximate the Following Definite Integral Using Midpoints & Sub-intervals0:11
- Example II: Express the Following Limit as a Definite Integral5:28
- Example III: Evaluate the Following Definite Integral Using the Definition6:28
- Example IV: Evaluate the Following Integral Using the Definition17:06
- Example V: Evaluate the Following Definite Integral by Using Areas25:41
- Example VI: Definite Integral30:36
24m 17s
- Intro0:00
- The Fundamental Theorem of Calculus0:17
- Evaluating an Integral0:18
- Lim as x → ∞12:19
- Taking the Derivative14:06
- Differentiation & Integration are Inverse Processes15:04
- 1st Fundamental Theorem of Calculus20:08
- 1st Fundamental Theorem of Calculus20:09
- 2nd Fundamental Theorem of Calculus22:30
- 2nd Fundamental Theorem of Calculus22:31
25m 21s
- Intro0:00
- Example I: Find the Derivative of the Following Function0:17
- Example II: Find the Derivative of the Following Function1:40
- Example III: Find the Derivative of the Following Function2:32
- Example IV: Find the Derivative of the Following Function5:55
- Example V: Evaluate the Following Integral7:13
- Example VI: Evaluate the Following Integral9:46
- Example VII: Evaluate the Following Integral12:49
- Example VIII: Evaluate the Following Integral13:53
- Example IX: Evaluate the Following Graph15:24
- Local Maxs and Mins for g(x)15:25
- Where Does g(x) Achieve Its Absolute Max on [0,8]20:54
- On What Intervals is g(x) Concave Up/Down?22:20
- Sketch a Graph of g(x)24:34
34m 22s
- Intro0:00
- Example I: Evaluate the Following Indefinite Integral0:10
- Example II: Evaluate the Following Definite Integral0:59
- Example III: Evaluate the Following Integral2:59
- Example IV: Velocity Function7:46
- Part A: Net Displacement7:47
- Part B: Total Distance Travelled13:15
- Example V: Linear Density Function20:56
- Example VI: Acceleration Function25:10
- Part A: Velocity Function at Time t25:11
- Part B: Total Distance Travelled During the Time Interval28:38
27m 20s
- Intro0:00
- Table of Integrals0:35
- Example I: Evaluate the Following Indefinite Integral2:02
- Example II: Evaluate the Following Indefinite Integral7:27
- Example IIII: Evaluate the Following Indefinite Integral10:57
- Example IV: Evaluate the Following Indefinite Integral12:33
- Example V: Evaluate the Following14:28
- Example VI: Evaluate the Following16:00
- Example VII: Evaluate the Following19:01
- Example VIII: Evaluate the Following21:49
- Example IX: Evaluate the Following24:34
34m 56s
- Intro0:00
- Areas Between Two Curves: Function of x0:08
- Graph 1: Area Between f(x) & g(x)0:09
- Graph 2: Area Between f(x) & g(x)4:07
- Is It Possible to Write as a Single Integral?8:20
- Area Between the Curves on [a,b]9:24
- Absolute Value10:32
- Formula for Areas Between Two Curves: Top Function - Bottom Function17:03
- Areas Between Curves: Function of y17:49
- What if We are Given Functions of y?17:50
- Formula for Areas Between Two Curves: Right Function - Left Function21:48
- Finding a & b22:32
42m 55s
- Intro0:00
- Instructions for the Example Problems0:10
- Example I: y = 7x - x² and y=x0:37
- Example II: x=y²-3, x=e^((1/2)y), y=-1, and y=26:25
- Example III: y=(1/x), y=(1/x³), and x=412:25
- Example IV: 15-2x² and y=x²-515:52
- Example V: x=(1/8)y³ and x=6-y²20:20
- Example VI: y=cos x, y=sin(2x), [0,π/2]24:34
- Example VII: y=2x², y=10x², 7x+2y=1029:51
- Example VIII: Velocity vs. Time33:23
- Part A: At 2.187 Minutes, Which care is Further Ahead?33:24
- Part B: If We Shaded the Region between the Graphs from t=0 to t=2.187, What Would This Shaded Area Represent?36:32
- Part C: At 4 Minutes Which Car is Ahead?37:11
- Part D: At What Time Will the Cars be Side by Side?37:50
34m 15s
- Intro0:00
- Volumes I: Slices0:18
- Rotate the Graph of y=√x about the x-axis0:19
- How can I use Integration to Find the Volume?3:16
- Slice the Solid Like a Loaf of Bread5:06
- Volumes Definition8:56
- Example I: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation12:18
- Example II: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation19:05
- Example III: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Given Functions about the Given Line of Rotation25:28
51m 43s
- Intro0:00
- Volumes II: Volumes by Washers0:11
- Rotating Region Bounded by y=x³ & y=x around the x-axis0:12
- Equation for Volumes by Washer11:14
- Process for Solving Volumes by Washer13:40
- Example I: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis15:58
- Example II: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis25:07
- Example III: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis34:20
- Example IV: Find the Volume of the Solid Obtained by Rotating the Region Bounded by the Following Functions around the Given Axis44:05
49m 36s
- Intro0:00
- Solids That Are Not Solids-of-Revolution0:11
- Cross-Section Area Review0:12
- Cross-Sections That Are Not Solids-of-Revolution7:36
- Example I: Find the Volume of a Pyramid Whose Base is a Square of Side-length S, and Whose Height is H10:54
- Example II: Find the Volume of a Solid Whose Cross-sectional Areas Perpendicular to the Base are Equilateral Triangles20:39
- Example III: Find the Volume of a Pyramid Whose Base is an Equilateral Triangle of Side-Length A, and Whose Height is H29:27
- Example IV: Find the Volume of a Solid Whose Base is Given by the Equation 16x² + 4y² = 6436:47
- Example V: Find the Volume of a Solid Whose Base is the Region Bounded by the Functions y=3-x² and the x-axis46:13
50m 2s
- Intro0:00
- Volumes by Cylindrical Shells0:11
- Find the Volume of the Following Region0:12
- Volumes by Cylindrical Shells: Integrating Along x14:12
- Volumes by Cylindrical Shells: Integrating Along y14:40
- Volumes by Cylindrical Shells Formulas16:22
- Example I: Using the Method of Cylindrical Shells, Find the Volume of the Solid18:33
- Example II: Using the Method of Cylindrical Shells, Find the Volume of the Solid25:57
- Example III: Using the Method of Cylindrical Shells, Find the Volume of the Solid31:38
- Example IV: Using the Method of Cylindrical Shells, Find the Volume of the Solid38:44
- Example V: Using the Method of Cylindrical Shells, Find the Volume of the Solid44:03
32m 13s
- Intro0:00
- The Average Value of a Function0:07
- Average Value of f(x)0:08
- What if The Domain of f(x) is Not Finite?2:23
- Let's Calculate Average Value for f(x) = x² [2,5]4:46
- Mean Value Theorem for Integrate9:25
- Example I: Find the Average Value of the Given Function Over the Given Interval14:06
- Example II: Find the Average Value of the Given Function Over the Given Interval18:25
- Example III: Find the Number A Such that the Average Value of the Function f(x) = -4x² + 8x + 4 Equals 2 Over the Interval [-1,A]24:04
- Example IV: Find the Average Density of a Rod27:47
50m 32s
- Intro0:00
- Integration by Parts0:08
- The Product Rule for Differentiation0:09
- Integrating Both Sides Retains the Equality0:52
- Differential Notation2:24
- Example I: ∫ x cos x dx5:41
- Example II: ∫ x² sin(2x)dx12:01
- Example III: ∫ (e^x) cos x dx18:19
- Example IV: ∫ (sin^-1) (x) dx23:42
- Example V: ∫₁⁵ (lnx)² dx28:25
- Summary32:31
- Tabular Integration35:08
- Case 135:52
- Example: ∫x³sinx dx36:39
- Case 240:28
- Example: ∫e^(2x) sin 3x41:14
24m 50s
- Intro0:00
- Example I: ∫ sin³ (x) dx1:36
- Example II: ∫ cos⁵(x)sin²(x)dx4:36
- Example III: ∫ sin⁴(x)dx9:23
- Summary for Evaluating Trigonometric Integrals of the Following Type: ∫ (sin^m) (x) (cos^p) (x) dx15:59
- #1: Power of sin is Odd16:00
- #2: Power of cos is Odd16:41
- #3: Powers of Both sin and cos are Odd16:55
- #4: Powers of Both sin and cos are Even17:10
- Example IV: ∫ tan⁴ (x) sec⁴ (x) dx17:34
- Example V: ∫ sec⁹(x) tan³(x) dx20:55
- Summary for Evaluating Trigonometric Integrals of the Following Type: ∫ (sec^m) (x) (tan^p) (x) dx23:31
- #1: Power of sec is Odd23:32
- #2: Power of tan is Odd24:04
- #3: Powers of sec is Odd and/or Power of tan is Even24:18
22m 12s
- Intro0:00
- Trigonometric Integrals II0:09
- Recall: ∫tanx dx0:10
- Let's Find ∫secx dx3:23
- Example I: ∫ tan⁵ (x) dx6:23
- Example II: ∫ sec⁵ (x) dx11:41
- Summary: How to Deal with Integrals of Different Types19:04
- Identities to Deal with Integrals of Different Types19:05
- Example III: ∫cos(5x)sin(9x)dx19:57
17m 22s
- Intro0:00
- Example I: ∫sin²(x)cos⁷(x)dx0:14
- Example II: ∫x sin²(x) dx3:56
- Example III: ∫csc⁴ (x/5)dx8:39
- Example IV: ∫( (1-tan²x)/(sec²x) ) dx11:17
- Example V: ∫ 1 / (sinx-1) dx13:19
55m 12s
- Intro0:00
- Integration by Partial Fractions I0:11
- Recall the Idea of Finding a Common Denominator0:12
- Decomposing a Rational Function to Its Partial Fractions4:10
- 2 Types of Rational Function: Improper & Proper5:16
- Improper Rational Function7:26
- Improper Rational Function7:27
- Proper Rational Function11:16
- Proper Rational Function & Partial Fractions11:17
- Linear Factors14:04
- Irreducible Quadratic Factors15:02
- Case 1: G(x) is a Product of Distinct Linear Factors17:10
- Example I: Integration by Partial Fractions20:33
- Case 2: D(x) is a Product of Linear Factors40:58
- Example II: Integration by Partial Fractions44:41
42m 57s
- Intro0:00
- Case 3: D(x) Contains Irreducible Factors0:09
- Example I: Integration by Partial Fractions5:19
- Example II: Integration by Partial Fractions16:22
- Case 4: D(x) has Repeated Irreducible Quadratic Factors27:30
- Example III: Integration by Partial Fractions30:19
46m 37s
- Intro0:00
- Introduction to Differential Equations0:09
- Overview0:10
- Differential Equations Involving Derivatives of y(x)2:08
- Differential Equations Involving Derivatives of y(x) and Function of y(x)3:23
- Equations for an Unknown Number6:28
- What are These Differential Equations Saying?10:30
- Verifying that a Function is a Solution of the Differential Equation13:00
- Verifying that a Function is a Solution of the Differential Equation13:01
- Verify that y(x) = 4e^x + 3x² + 6x + e^π is a Solution of this Differential Equation17:20
- General Solution22:00
- Particular Solution24:36
- Initial Value Problem27:42
- Example I: Verify that a Family of Functions is a Solution of the Differential Equation32:24
- Example II: For What Values of K Does the Function Satisfy the Differential Equation36:07
- Example III: Verify the Solution and Solve the Initial Value Problem39:47
28m 8s
- Intro0:00
- Separation of Variables0:28
- Separation of Variables0:29
- Example I: Solve the Following g Initial Value Problem8:29
- Example II: Solve the Following g Initial Value Problem13:46
- Example III: Find an Equation of the Curve18:48
51m 7s
- Intro0:00
- Standard Growth Model0:30
- Definition of the Standard/Natural Growth Model0:31
- Initial Conditions8:00
- The General Solution9:16
- Example I: Standard Growth Model10:45
- Logistic Growth Model18:33
- Logistic Growth Model18:34
- Solving the Initial Value Problem25:21
- What Happens When t → ∞36:42
- Example II: Solve the Following g Initial Value Problem41:50
- Relative Growth Rate46:56
- Relative Growth Rate46:57
- Relative Growth Rate Version for the Standard model49:04
24m 37s
- Intro0:00
- Slope Fields0:35
- Slope Fields0:36
- Graphing the Slope Fields, Part 111:12
- Graphing the Slope Fields, Part 215:37
- Graphing the Slope Fields, Part 317:25
- Steps to Solving Slope Field Problems20:24
- Example I: Draw or Generate the Slope Field of the Differential Equation y'=x cos y22:38
45m 29s
- Intro0:00
- Exam Link0:10
- Problem #11:26
- Problem #22:52
- Problem #34:42
- Problem #47:03
- Problem #510:01
- Problem #613:49
- Problem #715:16
- Problem #819:06
- Problem #923:10
- Problem #1028:10
- Problem #1131:30
- Problem #1233:53
- Problem #1337:45
- Problem #1441:17
41m 55s
- Intro0:00
- Problem #150:22
- Problem #163:10
- Problem #175:30
- Problem #188:03
- Problem #199:53
- Problem #2014:51
- Problem #2117:30
- Problem #2222:12
- Problem #2325:48
- Problem #2429:57
- Problem #2533:35
- Problem #2635:57
- Problem #2737:57
- Problem #2840:04
58m 47s
- Intro0:00
- Problem #11:22
- Problem #24:55
- Problem #310:49
- Problem #413:05
- Problem #514:54
- Problem #617:25
- Problem #718:39
- Problem #820:27
- Problem #926:48
- Problem #1028:23
- Problem #1134:03
- Problem #1236:25
- Problem #1339:52
- Problem #1443:12
- Problem #1547:18
- Problem #1650:41
- Problem #1756:38
25m 40s
- Intro0:00
- Problem #1: Part A1:14
- Problem #1: Part B4:46
- Problem #1: Part C8:00
- Problem #2: Part A12:24
- Problem #2: Part B16:51
- Problem #2: Part C17:17
- Problem #3: Part A18:16
- Problem #3: Part B19:54
- Problem #3: Part C21:44
- Problem #3: Part D22:57
31m 20s
- Intro0:00
- Problem #4: Part A1:35
- Problem #4: Part B5:54
- Problem #4: Part C8:50
- Problem #4: Part D9:40
- Problem #5: Part A11:26
- Problem #5: Part B13:11
- Problem #5: Part C15:07
- Problem #5: Part D19:57
- Problem #6: Part A22:01
- Problem #6: Part B25:34
- Problem #6: Part C28:54
0 answers
Post by Muhammad Ziad on April 12, 2017
Hello professor,
I was wondering: in the explanation about slope fields, how do you know that the DE, dy/dx=x+y is not separable?
Thanks so much for your lectures, they are so helpful!
Best,
M. Ziad
1 answer
Fri Jun 3, 2016 6:05 PM
Post by Mohamed Talni on May 25, 2016
Hello Professor,
excellent explanation. Do you know when the course BC Calculus will be published on the website.
Kind regards,
M.Tal